Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
The line passing through point \( P(4,1,0) \) intersects line \( L_1 \) and \( L_2 \).
Let us assume the point \( A \) on \( L_1 \) is given by parameter \( p \): \[ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} = p \Rightarrow A(2p + 1, 3p + 2, 4p + 3) \] Let point \( B \) on \( L_2 \) be parameterized using \( q \): \[ L_2: x - 6 = y = -z + 4 = q \Rightarrow B(q + 6, q, 4 - q) \] Now find the direction ratios (D.R.) of \( \overrightarrow{PA} \) and \( \overrightarrow{PB} \): \[ \text{D.R. of } \overrightarrow{PA} = (2p - 3, 3p + 1, 4p + 3) \text{D.R. of } \overrightarrow{PB} = (q + 2, q - 1, 4 - q) \] Since \( \overrightarrow{PA} \) and \( \overrightarrow{PB} \) are collinear, their components must be proportional: \[ \frac{2p - 3}{q + 2} = \frac{3p + 1}{q - 1} = \frac{4p + 3}{4 - q} \] Equating pairwise and solving: \[ 2pq - 2p - 3q + 3 = 3pq + 6p + q + 2 \Rightarrow pq + rp + 4q - 1 = 0 \quad \text{(1)} 7pq - 16p + 4q - 7 = 0 \quad \text{(2)} \] Solving these equations, we find: \[ pq = -3, \quad p = -1, \quad q = 3 \Rightarrow A(-1, -1, -1), \quad B(9, 3, 1) \] Now compute the determinant: \[ \begin{vmatrix} 1 & 0 & 1 -1 & -1 & -1 \\ 9 & 3 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix}-1 & -1 \\ 3 & 1 \end{vmatrix} - 0 + 1 \cdot \begin{vmatrix}-1 & -1 \\ 9 & 3 \end{vmatrix} = 1(-1 + 3) + 1( -3 + 9 ) = 2 + 6 = 8 \]
Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2\sqrt{17}$ from the foot of perpendicular drawn from the point $(1, 2, 3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{OA} \cdot \overrightarrow{OB}$ is equal to:
Let the shortest distance between the lines $\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}$ be $3\sqrt{30}$. Then the positive value of $5\alpha + \beta$ is
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to