The problem involves a geometric configuration with lines and curves, and we are tasked with finding the value of \( a + d \). Let's break down the solution in detail.
The given equation is: \[ x + y + 4 = 0 \] This represents a line with slope \(-1\) and y-intercept \(-4\). The points of intersection of the line with the axes are marked in the figure. - The line intersects the x-axis at \( (-4, 0) \). - The line intersects the y-axis at \( (0, -4) \). The area in question is the area of a right triangle formed by the x-axis, y-axis, and the line \( x + y + 4 = 0 \).
The area of a triangle is given by the formula: \[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \] In this case, the base of the triangle is the distance from the origin \( O \) to \( A(-4, 0) \), which is 4 units. The height is the distance from the origin \( O \) to the point \( B(0, -4) \), which is also 4 units. Therefore, the area is: \[ \text{Area} = \frac{1}{2} \times 4 \times 5 = 10 \] Hence, we can set \( a = 10 \).
The image shows the relationship between the variables \( a \) and \( d \). Given the geometric configuration, we know that: \[ 6 = 4 \quad \text{so} \quad a + d = 14 \] Thus, the value of \( a + d \) is 14.
\[ a + d = 14 \]
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
