The equation of the parabola is given in general form. We use the condition of the vertex \( \left( \frac{3}{2}, 3 \right) \) and the directrix \( x + 2y = 0 \) to derive the values of \( a \), \( b \), and \( c \). Then, we calculate \( \alpha + \beta + \gamma \).
Final Answer: \( \alpha + \beta + \gamma = 6 \).
If the area of the region \[ \{(x, y) : 1 - 2x \le y \le 4 - x^2,\ x \ge 0,\ y \ge 0\} \] is \[ \frac{\alpha}{\beta}, \] \(\alpha, \beta \in \mathbb{N}\), \(\gcd(\alpha, \beta) = 1\), then the value of \[ (\alpha + \beta) \] is :
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 