Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
- Statement (I) is incorrect because the compounds shown are not isomeric. Isomerism refers to different compounds with the same molecular formula but different structures or functional groups.
- Statement (II) is also incorrect because \( {NH}_2 \) and \( {NH} \) are not functional group isomers.
Functional group isomers are compounds that have the same molecular formula but differ in their functional groups.
\( {NH}_2 \) is an amine group, while \( {NH} \) is an imine group, but they are not functional group isomers.
Therefore, both statements are false.
\(X\) is the number of geometrical isomers exhibited by \([\mathrm{Pt(NH_3)(H_2O)BrCl}]\).
\(Y\) is the number of optically inactive isomer(s) exhibited by \([\mathrm{CrCl_2(ox)_2}]^{3-}\).
\(Z\) is the number of geometrical isomers exhibited by \([\mathrm{Co(NH_3)_3(NO_2)_3}]\). Find the value of \(X + Y + Z\). }
For the thermal decomposition of reactant AB(g), the following plot is constructed. 
The half life of the reaction is 'x' min.
x =_______} min. (Nearest integer)}
The incorrect statements regarding geometrical isomerism are:
(A) Propene shows geometrical isomerism.
(B) Trans isomer has identical atoms/groups on the opposite sides of the double bond.
(C) Cis-but-2-ene has higher dipole moment than trans-but-2-ene.
(D) 2-methylbut-2-ene shows two geometrical isomers.
(E) Trans-isomer has lower melting point than cis isomer.


In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 