Given: The initial pressure of \( N_2O_5 \) is \( P_0 \).
- \( \frac{1}{2} P_0 \) of \( N_2O_5 \) decomposes. - This produces: - \( P_0 \) of \( NO_2 \), - \( \frac{P_0}{4} \) of \( O_2 \).
The total final pressure is the sum of the partial pressures of the products and the remaining \( N_2O_5 \) at 50% reaction completion: \[ P_{\text{final}} = \frac{P_0}{2} + P_0 + \frac{P_0}{4} = \frac{7P_0}{4}. \]
Hence, the final pressure is \( \frac{7}{4} \) of the initial pressure.
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: