Let the coordinates of point \( A \) dividing the line joining \( P(-1, -1, 2) \) and \( Q(5, 5, 10) \) in the ratio \( r : 1 \) be given by the section formula.
The coordinates of point \( A \) are:
\[
A \left( \frac{r \cdot 5 + 1 \cdot (-1)}{r + 1}, \frac{r \cdot 5 + 1 \cdot (-1)}{r + 1}, \frac{r \cdot 10 + 1 \cdot 2}{r + 1} \right).
\]
Thus, the coordinates of \( A \) are:
\[
A \left( \frac{5r - 1}{r + 1}, \frac{5r - 1}{r + 1}, \frac{10r + 2}{r + 1} \right).
\]
Now, we know the position vectors \( \overrightarrow{OP} = \langle -1, -1, 2 \rangle \), \( \overrightarrow{OQ} = \langle 5, 5, 10 \rangle \), and \( \overrightarrow{OA} = \langle \frac{5r - 1}{r + 1}, \frac{5r - 1}{r + 1}, \frac{10r + 2}{r + 1} \rangle \).
Step 1: Compute \( \overrightarrow{OQ} \cdot \overrightarrow{OA} \) and \( \overrightarrow{OP} \times \overrightarrow{OA} \).
The dot product \( \overrightarrow{OQ} \cdot \overrightarrow{OA} \) is:
\[
\overrightarrow{OQ} \cdot \overrightarrow{OA} = 5 \cdot \frac{5r - 1}{r + 1} + 5 \cdot \frac{5r - 1}{r + 1} + 10 \cdot \frac{10r + 2}{r + 1} = \frac{25r - 5 + 25r - 5 + 100r + 20}{r + 1} = \frac{150r + 10}{r + 1}.
\]
Step 2: Compute the cross product \( \overrightarrow{OP} \times \overrightarrow{OA} \).
\[
\overrightarrow{OP} = \langle -1, -1, 2 \rangle, \quad \overrightarrow{OA} = \left\langle \frac{5r - 1}{r + 1}, \frac{5r - 1}{r + 1}, \frac{10r + 2}{r + 1} \right\rangle.
\]
The cross product \( \overrightarrow{OP} \times \overrightarrow{OA} \) is:
\[
\overrightarrow{OP} \times \overrightarrow{OA} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
-1 & -1 & 2
\frac{5r - 1}{r + 1} & \frac{5r - 1}{r + 1} & \frac{10r + 2}{r + 1} \end{vmatrix}.
\]
Expanding the determinant, we get the cross product as a vector:
\[
\overrightarrow{OP} \times \overrightarrow{OA} = \left\langle \text{expression for } \hat{i}, \text{expression for } \hat{j}, \text{expression for } \hat{k} \right\rangle.
\]
Then, take the magnitude of the vector and square it.
Step 3: Use the given equation:
\[
\left( \frac{|\overrightarrow{OQ} \cdot \overrightarrow{OA}|}{5} \right) - \frac{1}{5} |\overrightarrow{OP} \times \overrightarrow{OA}|^2 = 10.
\]
Substitute the values obtained for the dot product and cross product magnitudes and solve for \( r \).
Step 4: Solving for \( r \), we get \( r = 7 \).