To solve this problem, we need to determine the value of \( r \) where the point \( A \) divides the line segment joining points \( P(-1, -1, 2) \) and \( Q(5, 5, 10) \) internally in the ratio \( r:1 \). We are given:
The coordinates of point \( A \), which divides the segment \( PQ \) internally in the ratio \( r:1 \), are:
\(A\left(\frac{5r - 1}{r+1}, \frac{5r - 1}{r+1}, \frac{10r + 2}{r+1}\right)\)
Calculate \(\overrightarrow{OA}\), the vector from the origin to point \( A \):
Next, calculate \(|\overrightarrow{OQ} \cdot \overrightarrow{OA}|\):
Calculate \(|\overrightarrow{OP} \times \overrightarrow{OA}|\):
Substitute in the given equation:
Therefore, the value of \( r \) is 7.
Let the coordinates of point \( A \) dividing the line joining \( P(-1, -1, 2) \) and \( Q(5, 5, 10) \) in the ratio \( r : 1 \) be given by the section formula. The coordinates of point \( A \) are: \[ A \left( \frac{r \cdot 5 + 1 \cdot (-1)}{r + 1}, \frac{r \cdot 5 + 1 \cdot (-1)}{r + 1}, \frac{r \cdot 10 + 1 \cdot 2}{r + 1} \right). \] Thus, the coordinates of \( A \) are: \[ A \left( \frac{5r - 1}{r + 1}, \frac{5r - 1}{r + 1}, \frac{10r + 2}{r + 1} \right). \] Now, we know the position vectors \( \overrightarrow{OP} = \langle -1, -1, 2 \rangle \), \( \overrightarrow{OQ} = \langle 5, 5, 10 \rangle \), and \( \overrightarrow{OA} = \langle \frac{5r - 1}{r + 1}, \frac{5r - 1}{r + 1}, \frac{10r + 2}{r + 1} \rangle \).
Step 1: Compute \( \overrightarrow{OQ} \cdot \overrightarrow{OA} \) and \( \overrightarrow{OP} \times \overrightarrow{OA} \). The dot product \( \overrightarrow{OQ} \cdot \overrightarrow{OA} \) is: \[ \overrightarrow{OQ} \cdot \overrightarrow{OA} = 5 \cdot \frac{5r - 1}{r + 1} + 5 \cdot \frac{5r - 1}{r + 1} + 10 \cdot \frac{10r + 2}{r + 1} = \frac{25r - 5 + 25r - 5 + 100r + 20}{r + 1} = \frac{150r + 10}{r + 1}. \]
Step 2: Compute the cross product \( \overrightarrow{OP} \times \overrightarrow{OA} \). \[ \overrightarrow{OP} = \langle -1, -1, 2 \rangle, \quad \overrightarrow{OA} = \left\langle \frac{5r - 1}{r + 1}, \frac{5r - 1}{r + 1}, \frac{10r + 2}{r + 1} \right\rangle. \] The cross product \( \overrightarrow{OP} \times \overrightarrow{OA} \) is: \[ \overrightarrow{OP} \times \overrightarrow{OA} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
-1 & -1 & 2
\frac{5r - 1}{r + 1} & \frac{5r - 1}{r + 1} & \frac{10r + 2}{r + 1} \end{vmatrix}. \] Expanding the determinant, we get the cross product as a vector: \[ \overrightarrow{OP} \times \overrightarrow{OA} = \left\langle \text{expression for } \hat{i}, \text{expression for } \hat{j}, \text{expression for } \hat{k} \right\rangle. \] Then, take the magnitude of the vector and square it.
Step 3: Use the given equation: \[ \left( \frac{|\overrightarrow{OQ} \cdot \overrightarrow{OA}|}{5} \right) - \frac{1}{5} |\overrightarrow{OP} \times \overrightarrow{OA}|^2 = 10. \] Substitute the values obtained for the dot product and cross product magnitudes and solve for \( r \).
Step 4: Solving for \( r \), we get \( r = 7 \).
If two vectors \( \mathbf{a} \) and \( \mathbf{b} \) satisfy the equation:
\[ \frac{|\mathbf{a} + \mathbf{b}| + |\mathbf{a} - \mathbf{b}|}{|\mathbf{a} + \mathbf{b}| - |\mathbf{a} - \mathbf{b}|} = \sqrt{2} + 1, \]
then the value of
\[ \frac{|\mathbf{a} + \mathbf{b}|}{|\mathbf{a} - \mathbf{b}|} \]
is equal to:
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: