To solve this problem, we need to determine the value of \( r \) where the point \( A \) divides the line segment joining points \( P(-1, -1, 2) \) and \( Q(5, 5, 10) \) internally in the ratio \( r:1 \). We are given:
The coordinates of point \( A \), which divides the segment \( PQ \) internally in the ratio \( r:1 \), are:
\(A\left(\frac{5r - 1}{r+1}, \frac{5r - 1}{r+1}, \frac{10r + 2}{r+1}\right)\)
Calculate \(\overrightarrow{OA}\), the vector from the origin to point \( A \):
Next, calculate \(|\overrightarrow{OQ} \cdot \overrightarrow{OA}|\):
Calculate \(|\overrightarrow{OP} \times \overrightarrow{OA}|\):
Substitute in the given equation:
Therefore, the value of \( r \) is 7.
Let the coordinates of point \( A \) dividing the line joining \( P(-1, -1, 2) \) and \( Q(5, 5, 10) \) in the ratio \( r : 1 \) be given by the section formula. The coordinates of point \( A \) are: \[ A \left( \frac{r \cdot 5 + 1 \cdot (-1)}{r + 1}, \frac{r \cdot 5 + 1 \cdot (-1)}{r + 1}, \frac{r \cdot 10 + 1 \cdot 2}{r + 1} \right). \] Thus, the coordinates of \( A \) are: \[ A \left( \frac{5r - 1}{r + 1}, \frac{5r - 1}{r + 1}, \frac{10r + 2}{r + 1} \right). \] Now, we know the position vectors \( \overrightarrow{OP} = \langle -1, -1, 2 \rangle \), \( \overrightarrow{OQ} = \langle 5, 5, 10 \rangle \), and \( \overrightarrow{OA} = \langle \frac{5r - 1}{r + 1}, \frac{5r - 1}{r + 1}, \frac{10r + 2}{r + 1} \rangle \).
Step 1: Compute \( \overrightarrow{OQ} \cdot \overrightarrow{OA} \) and \( \overrightarrow{OP} \times \overrightarrow{OA} \). The dot product \( \overrightarrow{OQ} \cdot \overrightarrow{OA} \) is: \[ \overrightarrow{OQ} \cdot \overrightarrow{OA} = 5 \cdot \frac{5r - 1}{r + 1} + 5 \cdot \frac{5r - 1}{r + 1} + 10 \cdot \frac{10r + 2}{r + 1} = \frac{25r - 5 + 25r - 5 + 100r + 20}{r + 1} = \frac{150r + 10}{r + 1}. \]
Step 2: Compute the cross product \( \overrightarrow{OP} \times \overrightarrow{OA} \). \[ \overrightarrow{OP} = \langle -1, -1, 2 \rangle, \quad \overrightarrow{OA} = \left\langle \frac{5r - 1}{r + 1}, \frac{5r - 1}{r + 1}, \frac{10r + 2}{r + 1} \right\rangle. \] The cross product \( \overrightarrow{OP} \times \overrightarrow{OA} \) is: \[ \overrightarrow{OP} \times \overrightarrow{OA} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
-1 & -1 & 2
\frac{5r - 1}{r + 1} & \frac{5r - 1}{r + 1} & \frac{10r + 2}{r + 1} \end{vmatrix}. \] Expanding the determinant, we get the cross product as a vector: \[ \overrightarrow{OP} \times \overrightarrow{OA} = \left\langle \text{expression for } \hat{i}, \text{expression for } \hat{j}, \text{expression for } \hat{k} \right\rangle. \] Then, take the magnitude of the vector and square it.
Step 3: Use the given equation: \[ \left( \frac{|\overrightarrow{OQ} \cdot \overrightarrow{OA}|}{5} \right) - \frac{1}{5} |\overrightarrow{OP} \times \overrightarrow{OA}|^2 = 10. \] Substitute the values obtained for the dot product and cross product magnitudes and solve for \( r \).
Step 4: Solving for \( r \), we get \( r = 7 \).
If two vectors \( \mathbf{a} \) and \( \mathbf{b} \) satisfy the equation:
\[ \frac{|\mathbf{a} + \mathbf{b}| + |\mathbf{a} - \mathbf{b}|}{|\mathbf{a} + \mathbf{b}| - |\mathbf{a} - \mathbf{b}|} = \sqrt{2} + 1, \]
then the value of
\[ \frac{|\mathbf{a} + \mathbf{b}|}{|\mathbf{a} - \mathbf{b}|} \]
is equal to:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 