The given determinant \( D_k \) is:
\[ D_k = \begin{vmatrix} 1 & 2k & 2k - 1 \\ n & n^2 + n + 2 & n^2 \\ n & n^2 + n & n^2 + n + 2 \end{vmatrix} \]
The sum of determinants is:
\[ \sum_{k=1}^{n} D_k = 96 \]
Expanding the determinant for the summation:
\[ \begin{vmatrix} \sum_{k=1}^{n} 1 & \sum_{k=1}^{n} 2k & \sum_{k=1}^{n} (2k-1) \\ n & n^2 + n + 2 & n^2 \\ n & n^2 + n & n^2 + n + 2 \end{vmatrix} = 96 \]
Simplify the summations:
\( \sum_{k=1}^{n} 1 = n \), \( \sum_{k=1}^{n} 2k = n(n+1) \), \( \sum_{k=1}^{n} (2k-1) = n^2 \)
Substitute back:
\[ \begin{vmatrix} n & n(n+1) & n^2 \\ n & n^2 + n + 2 & n^2 \\ n & n^2 + n & n^2 + n + 2 \end{vmatrix} = 96 \]
Perform row operations to simplify:
\( R_2 \rightarrow R_2 - R_1, \quad R_3 \rightarrow R_3 - R_1 \)
This gives:
\[ \begin{vmatrix} n & n^2 + n & n^2 \\ 0 & 2 & 0 \\ 0 & 0 & n+2 \end{vmatrix} = 96 \]
Calculate the determinant:
\( n \cdot 2 \cdot (n+2) = 96 \)
Simplify:
\( 2n(n+2) = 96 \Rightarrow n(n+2) = 48 \)
Solve for \( n \):
\( n^2 + 2n - 48 = 0 \)
Factorize:
\( (n - 6)(n + 8) = 0 \Rightarrow n = 6 \) (as \( n > 0 \))
Final Answer: \( n = 6 \)
If the matrix $ A $ is such that $ A \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 7 & 7 \end{pmatrix} \text{ then } A \text{ is equal to} $
If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix} \quad \text{and} \quad A \, \text{adj} \, A = A A^t, \quad \text{then} \, 5a + b \, \text{is equal to}$
If $3A + 4B^{t} = \left( \begin{array}{cc} 7 & -10 \\ 0 & 6 \end{array} \right) $ and $ 2B - 3A^{t} = \left( \begin{array}{cc} -1 & 18 \\ 4 & -6 \\ -5 & -7 \end{array} \right) $, then find $ (5B)^{t}$:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: