The given determinant \( D_k \) is:
\[ D_k = \begin{vmatrix} 1 & 2k & 2k - 1 \\ n & n^2 + n + 2 & n^2 \\ n & n^2 + n & n^2 + n + 2 \end{vmatrix} \]
The sum of determinants is:
\[ \sum_{k=1}^{n} D_k = 96 \]
Expanding the determinant for the summation:
\[ \begin{vmatrix} \sum_{k=1}^{n} 1 & \sum_{k=1}^{n} 2k & \sum_{k=1}^{n} (2k-1) \\ n & n^2 + n + 2 & n^2 \\ n & n^2 + n & n^2 + n + 2 \end{vmatrix} = 96 \]
Simplify the summations:
\( \sum_{k=1}^{n} 1 = n \), \( \sum_{k=1}^{n} 2k = n(n+1) \), \( \sum_{k=1}^{n} (2k-1) = n^2 \)
Substitute back:
\[ \begin{vmatrix} n & n(n+1) & n^2 \\ n & n^2 + n + 2 & n^2 \\ n & n^2 + n & n^2 + n + 2 \end{vmatrix} = 96 \]
Perform row operations to simplify:
\( R_2 \rightarrow R_2 - R_1, \quad R_3 \rightarrow R_3 - R_1 \)
This gives:
\[ \begin{vmatrix} n & n^2 + n & n^2 \\ 0 & 2 & 0 \\ 0 & 0 & n+2 \end{vmatrix} = 96 \]
Calculate the determinant:
\( n \cdot 2 \cdot (n+2) = 96 \)
Simplify:
\( 2n(n+2) = 96 \Rightarrow n(n+2) = 48 \)
Solve for \( n \):
\( n^2 + 2n - 48 = 0 \)
Factorize:
\( (n - 6)(n + 8) = 0 \Rightarrow n = 6 \) (as \( n > 0 \))
Final Answer: \( n = 6 \)
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.