If the matrix $ A $ is such that $ A \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 7 & 7 \end{pmatrix} \text{ then } A \text{ is equal to} $
We are given the equation: \[ A \begin{pmatrix} -1 & 2 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 7 & 7 \end{pmatrix}. \] To find \( A \), we can multiply both sides by the inverse of the matrix \( \begin{pmatrix} -1 & 2 3 & 1 \end{pmatrix} \) from the right.
Thus, we need to calculate the inverse of \( \begin{pmatrix} -1 & 2 3 & 1 \end{pmatrix} \). The determinant \( \text{det}(M) \) of the matrix \( M = \begin{pmatrix} -1 & 2 3 & 1 \end{pmatrix} \) is: \[ \text{det}(M) = (-1)(1) - (2)(3) = -1 - 6 = -7. \] The inverse of matrix \( M \) is given by: \[ M^{-1} = \frac{1}{\text{det}(M)} \begin{pmatrix} 1 & -2 -3 & -1 \end{pmatrix} = \frac{1}{-7} \begin{pmatrix} 1 & -2 -3 & -1 \end{pmatrix}. \] So, \[ M^{-1} = \begin{pmatrix} -\frac{1}{7} & \frac{2}{7} \frac{3}{7} & \frac{1}{7} \end{pmatrix}. \] Now, multiply both sides of the given equation by \( M^{-1} \) from the right: \[ A = \begin{pmatrix} -4 & 1 7 & 7 \end{pmatrix} \begin{pmatrix} -\frac{1}{7} & \frac{2}{7} \frac{3}{7} & \frac{1}{7} \end{pmatrix}. \] Perform the matrix multiplication: \[ A = \begin{pmatrix} -4 \cdot -\frac{1}{7} + 1 \cdot \frac{3}{7} & -4 \cdot \frac{2}{7} + 1 \cdot \frac{1}{7} 7 \cdot -\frac{1}{7} + 7 \cdot \frac{3}{7} & 7 \cdot \frac{2}{7} + 7 \cdot \frac{1}{7} \end{pmatrix}. \] Simplifying each element: \[ A = \begin{pmatrix} \frac{4}{7} + \frac{3}{7} & \\ -\frac{8}{7} + \frac{1}{7} -1 + 3 & 2 + 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}. \]
Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} 1 & 2 3 & -1 \end{pmatrix}. \]
Hence, the correct answer is (D).
If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix} \quad \text{and} \quad A \, \text{adj} \, A = A A^t, \quad \text{then} \, 5a + b \, \text{is equal to}$
If $3A + 4B^{t} = \left( \begin{array}{cc} 7 & -10 \\ 0 & 6 \end{array} \right) $ and $ 2B - 3A^{t} = \left( \begin{array}{cc} -1 & 18 \\ 4 & -6 \\ -5 & -7 \end{array} \right) $, then find $ (5B)^{t}$:
If the ratio of lengths, radii and Young's Moduli of steel and brass wires in the figure are $ a $, $ b $, and $ c $ respectively, then the corresponding ratio of increase in their lengths would be: