If the matrix $ A $ is such that $ A \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 7 & 7 \end{pmatrix} \text{ then } A \text{ is equal to} $
We are given the equation: \[ A \begin{pmatrix} -1 & 2 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 7 & 7 \end{pmatrix}. \] To find \( A \), we can multiply both sides by the inverse of the matrix \( \begin{pmatrix} -1 & 2 3 & 1 \end{pmatrix} \) from the right.
Thus, we need to calculate the inverse of \( \begin{pmatrix} -1 & 2 3 & 1 \end{pmatrix} \). The determinant \( \text{det}(M) \) of the matrix \( M = \begin{pmatrix} -1 & 2 3 & 1 \end{pmatrix} \) is: \[ \text{det}(M) = (-1)(1) - (2)(3) = -1 - 6 = -7. \] The inverse of matrix \( M \) is given by: \[ M^{-1} = \frac{1}{\text{det}(M)} \begin{pmatrix} 1 & -2 -3 & -1 \end{pmatrix} = \frac{1}{-7} \begin{pmatrix} 1 & -2 -3 & -1 \end{pmatrix}. \] So, \[ M^{-1} = \begin{pmatrix} -\frac{1}{7} & \frac{2}{7} \frac{3}{7} & \frac{1}{7} \end{pmatrix}. \] Now, multiply both sides of the given equation by \( M^{-1} \) from the right: \[ A = \begin{pmatrix} -4 & 1 7 & 7 \end{pmatrix} \begin{pmatrix} -\frac{1}{7} & \frac{2}{7} \frac{3}{7} & \frac{1}{7} \end{pmatrix}. \] Perform the matrix multiplication: \[ A = \begin{pmatrix} -4 \cdot -\frac{1}{7} + 1 \cdot \frac{3}{7} & -4 \cdot \frac{2}{7} + 1 \cdot \frac{1}{7} 7 \cdot -\frac{1}{7} + 7 \cdot \frac{3}{7} & 7 \cdot \frac{2}{7} + 7 \cdot \frac{1}{7} \end{pmatrix}. \] Simplifying each element: \[ A = \begin{pmatrix} \frac{4}{7} + \frac{3}{7} & \\ -\frac{8}{7} + \frac{1}{7} -1 + 3 & 2 + 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}. \]
Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} 1 & 2 3 & -1 \end{pmatrix}. \]
Hence, the correct answer is (D).
200 ml of an aqueous solution contains 3.6 g of Glucose and 1.2 g of Urea maintained at a temperature equal to 27$^{\circ}$C. What is the Osmotic pressure of the solution in atmosphere units?
Given Data R = 0.082 L atm K$^{-1}$ mol$^{-1}$
Molecular Formula: Glucose = C$_6$H$_{12}$O$_6$, Urea = NH$_2$CONH$_2$