Given matrices \( A \) and \( B \) where:
and the condition:
If matrix \( C \) is defined as:
then the trace of \( C \) is:
9
The trace of a matrix is the sum of its diagonal elements. For the matrix \( C = \begin{bmatrix} x & 2 \\ 1 & y \end{bmatrix} \), the trace is: \[ \text{Trace}(C) = x + y \] To find \(x\) and \(y\), we use the given matrix equation \( (A + B)(A - B) = A^2 - B^2 \). Simplifying each side of the equation using the properties of matrix addition and subtraction and then equating the resulting matrices: \[ A + B = \begin{bmatrix} 1+x & 2+y \\ 3 & 3 \end{bmatrix}, \quad A - B = \begin{bmatrix} 1-x & 2-y \\ 1 & -1 \end{bmatrix} \] \[ A^2 = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}, \quad B^2 = \begin{bmatrix} x^2+y & 2x+2y \\ x+2 & 5 \end{bmatrix} \] Equating \(A^2 - B^2\) and \((A + B)(A - B)\), solving for \(x\) and \(y\), we find that \(x = 1\) and \(y = 2\). Substituting back into the trace formula: \[ \text{Trace}(C) = 1 + 2 = 3 \] Thus, the trace of matrix \( C \) is 3, matching option (1).
$$ \begin{vmatrix} x-2 & 3x-3 & 5x-5 \\ x-4 & 3x-9 & 5x-25 \\ x-8 & 3x-27 & 5x-125 \end{vmatrix} = 0 $$
Calculate the determinant of the matrix:
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
In Bohr model of hydrogen atom, if the difference between the radii of \( n^{th} \) and\( (n+1)^{th} \)orbits is equal to the radius of the \( (n-1)^{th} \) orbit, then the value of \( n \) is: