Given matrices \( A \) and \( B \) where:
and the condition:
If matrix \( C \) is defined as:
then the trace of \( C \) is:
9
The trace of a matrix is the sum of its diagonal elements. For the matrix \( C = \begin{bmatrix} x & 2 \\ 1 & y \end{bmatrix} \), the trace is: \[ \text{Trace}(C) = x + y \] To find \(x\) and \(y\), we use the given matrix equation \( (A + B)(A - B) = A^2 - B^2 \). Simplifying each side of the equation using the properties of matrix addition and subtraction and then equating the resulting matrices: \[ A + B = \begin{bmatrix} 1+x & 2+y \\ 3 & 3 \end{bmatrix}, \quad A - B = \begin{bmatrix} 1-x & 2-y \\ 1 & -1 \end{bmatrix} \] \[ A^2 = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}, \quad B^2 = \begin{bmatrix} x^2+y & 2x+2y \\ x+2 & 5 \end{bmatrix} \] Equating \(A^2 - B^2\) and \((A + B)(A - B)\), solving for \(x\) and \(y\), we find that \(x = 1\) and \(y = 2\). Substituting back into the trace formula: \[ \text{Trace}(C) = 1 + 2 = 3 \] Thus, the trace of matrix \( C \) is 3, matching option (1).
A, B, C, D are square matrices such that A + B is symmetric, A - B is skew-symmetric, and D is the transpose of C.
If
\[ A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 3 & -2 \\ 3 & -4 & 5 \end{bmatrix} \]
and
\[ C = \begin{bmatrix} 0 & 1 & -2 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \]
then the matrix \( B + D \) is:
Matrix Inverse Sum Calculation
Given the matrix:
A = | 1 2 2 | | 3 2 3 | | 1 1 2 |
The inverse matrix is represented as:
A-1 = | a11 a12 a13 | | a21 a22 a23 | | a31 a32 a33 |
The sum of all elements in A-1 is:
Calculate the determinant of the matrix: