A, B, C, D are square matrices such that A + B is symmetric, A - B is skew-symmetric, and D is the transpose of C.
If
\[ A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 3 & -2 \\ 3 & -4 & 5 \end{bmatrix} \]
and
\[ C = \begin{bmatrix} 0 & 1 & -2 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \]
then the matrix \( B + D \) is:
\[ \begin{bmatrix} -1 & 6 & 3 \\ 6 & 2 & -2 \\ 3 & -2 & 6 \end{bmatrix} \]
\[ \begin{bmatrix} -1 & 6 & 3 \\ 3 & 2 & -2 \\ 1 & -2 & 6 \end{bmatrix} \]
\[ \begin{bmatrix} 3 & 2 & -2 \\ 2 & 6 & 3 \\ -2 & 3 & 2 \end{bmatrix} \]
\[ \begin{bmatrix} 1 & -2 & 6 \\ -2 & 3 & 2 \\ 6 & 2 & 1 \end{bmatrix} \]
To solve the problem, we analyze the given conditions and matrices step by step.
From the conditions:
\( A + B \) is symmetric:
\[ (A + B)^T = A + B \]Taking the transpose:
\[ A^T + B^T = A + B \quad \text{(1)} \]\( A - B \) is skew-symmetric:
\[ (A - B)^T = -(A - B) \]Taking the transpose:
\[ A^T - B^T = -A + B \quad \text{(2)} \]Adding equations (1) and (2):
\[ (A^T + B^T) + (A^T - B^T) = (A + B) + (-A + B) \]Simplify:
\[ 2A^T = 2B \]Divide by 2:
\[ B = A^T \]Given:
\[ A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 3 & -2 \\ 3 & -4 & 5 \end{bmatrix} \]The transpose of \( A \) is:
\[ B = A^T = \begin{bmatrix} -1 & 4 & 3 \\ 2 & 3 & -4 \\ 3 & -2 & 5 \end{bmatrix} \]Given:
\[ C = \begin{bmatrix} 0 & 1 & -2 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \]The transpose of \( C \) is:
\[ D = C^T = \begin{bmatrix} 0 & 2 & 0 \\ 1 & -1 & 2 \\ -2 & 0 & 1 \end{bmatrix} \]Add \( B \) and \( D \):
\[ B + D = \begin{bmatrix} -1 & 4 & 3 \\ 2 & 3 & -4 \\ 3 & -2 & 5 \end{bmatrix} + \begin{bmatrix} 0 & 2 & 0 \\ 1 & -1 & 2 \\ -2 & 0 & 1 \end{bmatrix} \] \[ B + D = \begin{bmatrix} -1+0 & 4+2 & 3+0 \\ 2+1 & 3+(-1) & -4+2 \\ 3+(-2) & -2+0 & 5+1 \end{bmatrix} \] \[ B + D = \begin{bmatrix} -1 & 6 & 3 \\ 3 & 2 & -2 \\ 1 & -2 & 6 \end{bmatrix} \]The matrix \( B + D \) is:
\[ \boxed{\begin{bmatrix} -1 & 6 & 3 \\ 3 & 2 & -2 \\ 1 & -2 & 6 \end{bmatrix}} \]Calculate the determinant of the matrix:
$$ \begin{vmatrix} x-2 & 3x-3 & 5x-5 \\ x-4 & 3x-9 & 5x-25 \\ x-8 & 3x-27 & 5x-125 \end{vmatrix} = 0 $$
If \( x \) and \( y \) are two positive real numbers such that \( x + iy = \frac{13\sqrt{5} + 12i}{(2 - 3i)(3 + 2i)} \), then \( 13y - 26x = \):
If \( A = \begin{pmatrix} x & y & y \\ y & x & y \\ y & y & x \end{pmatrix} \) and \( 5A^{-1} = \begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix} \), then \( A^2 - 4A \) is:
If the real-valued function
\[ f(x) = \sin^{-1}(x^2 - 1) - 3\log_3(3^x - 2) \]is not defined for all \( x \in (-\infty, a] \cup (b, \infty) \), then what is \( 3^a + b^2 \)?
Three similar urns \(A,B,C\) contain \(2\) red and \(3\) white balls; \(3\) red and \(2\) white balls; \(1\) red and \(4\) white balls, respectively. If a ball is selected at random from one of the urns is found to be red, then the probability that it is drawn from urn \(C\) is ?