Step 1: Observe each term.
Each term has the form \(\frac{1}{(3k)\,(3k+3)}\) where \(k = 1,2,3,\dots\). For instance:
\[
\frac{1}{3 \cdot 6},\quad \frac{1}{6 \cdot 9},\quad \frac{1}{9 \cdot 12},\dots
\]
Generally,
\[
\frac{1}{(3k)\,[3(k+1)]} = \frac{1}{3\cdot 3} \cdot \frac{1}{k(k+1)} = \frac{1}{9}\Bigl[\frac{1}{k} - \frac{1}{k+1}\Bigr].
\]
Step 2: Summation of 9 terms.
When we expand:
\[
\sum_{k=1}^{9} \frac{1}{(3k)(3k+3)}
= \frac{1}{9} \sum_{k=1}^{9} \Bigl(\frac{1}{k} - \frac{1}{k+1}\Bigr)
= \frac{1}{9} \Bigl(1 - \frac{1}{10}\Bigr)
= \frac{1}{9} \cdot \frac{9}{10}
= \frac{1}{10}.
\]
Hence, the sum up to 9 terms is \(\boxed{\frac{1}{10}}\).