Step 1: Utilizing the matrix equation.
From \(A^2 + I = 2A\), we can express \(A^2 = 2A - I\).
Step 2: Calculating higher powers of \(A\).
\[ A^3 = A \cdot A^2 = A(2A - I) = 2A^2 - A = 2(2A - I) - A = 4A - 2I - A = 3A - 2I \] \[ A^4 = A \cdot A^3 = A(3A - 2I) = 3A^2 - 2A = 3(2A - I) - 2A = 6A - 3I - 2A = 4A - 3I \] Continuing this way, calculate up to \(A^9\).
Step 3: Expressing \(A^9\) in terms of \(A\) and \(I\).
Through repeated squaring and multiplication, we find: \[ A^9 = 9A - 8I \]
Calculate the determinant of the matrix:
A, B, C, D are square matrices such that A + B is symmetric, A - B is skew-symmetric, and D is the transpose of C.
If
\[ A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 3 & -2 \\ 3 & -4 & 5 \end{bmatrix} \]
and
\[ C = \begin{bmatrix} 0 & 1 & -2 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \]
then the matrix \( B + D \) is:
Matrix Inverse Sum Calculation
Given the matrix:
A = | 1 2 2 | | 3 2 3 | | 1 1 2 |
The inverse matrix is represented as:
A-1 = | a11 a12 a13 | | a21 a22 a23 | | a31 a32 a33 |
The sum of all elements in A-1 is: