Step 1: Utilizing the matrix equation.
From \(A^2 + I = 2A\), we can express \(A^2 = 2A - I\).
Step 2: Calculating higher powers of \(A\).
\[ A^3 = A \cdot A^2 = A(2A - I) = 2A^2 - A = 2(2A - I) - A = 4A - 2I - A = 3A - 2I \] \[ A^4 = A \cdot A^3 = A(3A - 2I) = 3A^2 - 2A = 3(2A - I) - 2A = 6A - 3I - 2A = 4A - 3I \] Continuing this way, calculate up to \(A^9\).
Step 3: Expressing \(A^9\) in terms of \(A\) and \(I\).
Through repeated squaring and multiplication, we find: \[ A^9 = 9A - 8I \]
Calculate the determinant of the matrix:
A, B, C, D are square matrices such that A + B is symmetric, A - B is skew-symmetric, and D is the transpose of C.
If
\[ A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 3 & -2 \\ 3 & -4 & 5 \end{bmatrix} \]
and
\[ C = \begin{bmatrix} 0 & 1 & -2 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \]
then the matrix \( B + D \) is:
$$ \begin{vmatrix} x-2 & 3x-3 & 5x-5 \\ x-4 & 3x-9 & 5x-25 \\ x-8 & 3x-27 & 5x-125 \end{vmatrix} = 0 $$
If \( A = \begin{pmatrix} x & y & y \\ y & x & y \\ y & y & x \end{pmatrix} \) and \( 5A^{-1} = \begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix} \), then \( A^2 - 4A \) is:
If the real-valued function
\[ f(x) = \sin^{-1}(x^2 - 1) - 3\log_3(3^x - 2) \]is not defined for all \( x \in (-\infty, a] \cup (b, \infty) \), then what is \( 3^a + b^2 \)?
Three similar urns \(A,B,C\) contain \(2\) red and \(3\) white balls; \(3\) red and \(2\) white balls; \(1\) red and \(4\) white balls, respectively. If a ball is selected at random from one of the urns is found to be red, then the probability that it is drawn from urn \(C\) is ?
If \( A = \begin{pmatrix} 9 & 3 & 0 \\ 1 & 5 & 8 \\ 7 & 6 & 2 \end{pmatrix} \) and
\[ A^T A^{-2} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \]then
\[ \sum_{1 \leq i \leq 3} \sum_{1 \leq j \leq 3} a_{ij} \]is: