Let
\( A = \begin{bmatrix} a & b \\ b & d \end{bmatrix} \).
From the given condition, we have:
\[ A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}, \]
which gives:
\( a + b = 3, \quad b + d = 7 \).
Also, the determinant of \( A \) is given by \( ad - b^2 = 1 \).
Using \( a + b = 3 \) and \( b + d = 7 \), we can solve these equations. Let's set up the system:
Expanding and simplifying, we get:
\( 21 - 10b + b^2 - b^2 = 1 \implies 21 - 10b = 1 \implies b = 2 \).
Then, \( a = 1 \) and \( d = 5 \).
Thus, we have: \[ A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}. \]
Now, we find \( A^{-1} \):
\[ A^{-1} = \frac{1}{1(5) - (2)(2)} \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}. \]
Since \( A^{-1} = \alpha A + \beta I \), we equate:
\[ \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} \alpha + \beta & 2\alpha \\ 2\alpha & 5\alpha + \beta \end{bmatrix}. \]
This gives the system:
Solving, we find \( \beta = 6 \).
Thus, \( \alpha + \beta = 5 \).
Answer: 5.
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is: