Let
\( A = \begin{bmatrix} a & b \\ b & d \end{bmatrix} \).
From the given condition, we have:
\[ A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}, \]
which gives:
\( a + b = 3, \quad b + d = 7 \).
Also, the determinant of \( A \) is given by \( ad - b^2 = 1 \).
Using \( a + b = 3 \) and \( b + d = 7 \), we can solve these equations. Let's set up the system:
Expanding and simplifying, we get:
\( 21 - 10b + b^2 - b^2 = 1 \implies 21 - 10b = 1 \implies b = 2 \).
Then, \( a = 1 \) and \( d = 5 \).
Thus, we have: \[ A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}. \]
Now, we find \( A^{-1} \):
\[ A^{-1} = \frac{1}{1(5) - (2)(2)} \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}. \]
Since \( A^{-1} = \alpha A + \beta I \), we equate:
\[ \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} \alpha + \beta & 2\alpha \\ 2\alpha & 5\alpha + \beta \end{bmatrix}. \]
This gives the system:
Solving, we find \( \beta = 6 \).
Thus, \( \alpha + \beta = 5 \).
Answer: 5.
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)