The function \( f(x) = [x] + |x - 2| \) consists of two components:
1. The greatest integer function, \( [x] \), which has discontinuities at integer values of \( x \).
2. The absolute value function, \( |x - 2| \), which has a critical point at \( x = 2 \).
Now, consider the interval \( -2<x<3 \). The points where \( f(x) \) is not continuous or differentiable are determined by:
- Discontinuities in \( [x] \), which happen at \( x = -1, 0, 1, 2 \).
- A critical point in \( |x - 2| \) at \( x = 2 \).
So, the points where \( f(x) \) is not continuous are \( x = -1, 0, 1, 2 \), which gives us \( m = 4 \) discontinuities. The points where \( f(x) \) is not differentiable are due to the change in the slope at these points. Specifically, the function is not differentiable at \( x = 2 \), so \( n = 1 \).
Thus, \( m + n = 4 + 3 = 7 \).
Final Answer: \( m + n = 7 \).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 