Step 1: Identifying the matrix elements. Matrix \( A = \begin{bmatrix} (\sqrt{2})^2 & (\sqrt{2})^3 & (\sqrt{2})^4 \\ (\sqrt{2})^3 & (\sqrt{2})^4 & (\sqrt{2})^5 \\ (\sqrt{2})^4 & (\sqrt{2})^5 & (\sqrt{2})^6 \end{bmatrix} = \begin{bmatrix} 2 & 2\sqrt{2} & 4 \\ 2\sqrt{2} & 4 & 4\sqrt{2} \\ 4 & 4\sqrt{2} & 8 \end{bmatrix} \)
Step 2: Squaring the matrix. \[ A^2 = 2\sqrt{2} \begin{bmatrix} 2 & 2 & 4 \\ 2 & 2 & 4 \\ 2 & 2 & 4 \end{bmatrix} \]
Step 3: Finding the third-row elements. Sum of elements in the third row: \[ 4(2 + 4 + 8) = 4(14\sqrt{2} + 28) \] \[ = 168 + 56\sqrt{2} \]
Step 4: Final Calculation. \[ \alpha + \beta = 168 + 56 = 224 \]
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
