Step 1: Identifying the matrix elements. Matrix \( A = \begin{bmatrix} (\sqrt{2})^2 & (\sqrt{2})^3 & (\sqrt{2})^4 \\ (\sqrt{2})^3 & (\sqrt{2})^4 & (\sqrt{2})^5 \\ (\sqrt{2})^4 & (\sqrt{2})^5 & (\sqrt{2})^6 \end{bmatrix} = \begin{bmatrix} 2 & 2\sqrt{2} & 4 \\ 2\sqrt{2} & 4 & 4\sqrt{2} \\ 4 & 4\sqrt{2} & 8 \end{bmatrix} \)
Step 2: Squaring the matrix. \[ A^2 = 2\sqrt{2} \begin{bmatrix} 2 & 2 & 4 \\ 2 & 2 & 4 \\ 2 & 2 & 4 \end{bmatrix} \]
Step 3: Finding the third-row elements. Sum of elements in the third row: \[ 4(2 + 4 + 8) = 4(14\sqrt{2} + 28) \] \[ = 168 + 56\sqrt{2} \]
Step 4: Final Calculation. \[ \alpha + \beta = 168 + 56 = 224 \]
Match List-I with List-II
List-I (Matrix) | List-II (Inverse of the Matrix) |
---|---|
(A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
(B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
(C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
(D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: