Step 1: Identifying the matrix elements. Matrix \( A = \begin{bmatrix} (\sqrt{2})^2 & (\sqrt{2})^3 & (\sqrt{2})^4 \\ (\sqrt{2})^3 & (\sqrt{2})^4 & (\sqrt{2})^5 \\ (\sqrt{2})^4 & (\sqrt{2})^5 & (\sqrt{2})^6 \end{bmatrix} = \begin{bmatrix} 2 & 2\sqrt{2} & 4 \\ 2\sqrt{2} & 4 & 4\sqrt{2} \\ 4 & 4\sqrt{2} & 8 \end{bmatrix} \)
Step 2: Squaring the matrix. \[ A^2 = 2\sqrt{2} \begin{bmatrix} 2 & 2 & 4 \\ 2 & 2 & 4 \\ 2 & 2 & 4 \end{bmatrix} \]
Step 3: Finding the third-row elements. Sum of elements in the third row: \[ 4(2 + 4 + 8) = 4(14\sqrt{2} + 28) \] \[ = 168 + 56\sqrt{2} \]
Step 4: Final Calculation. \[ \alpha + \beta = 168 + 56 = 224 \]
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.