Given points are \( A(1, -2) \), \( B(a, 6) \), and \( C\left(\frac{3}{2}, -2\right) \).
- The circumcenter \( O \) is \( \left(\frac{5}{3}, 4\right) \).
Calculate \( AO \) and \( BO \) (Using Distance Formula): - \( AO = BO \):
\((a - 5)^2 + \left(\frac{a}{4} + 2\right)^2 = (a - 5)^2 + \left(\frac{a}{4} - 6\right)^2\)
Solving this gives \( a = 8 \).
Determine Side Lengths of the Triangle: - With \( a = 8 \): \( AB = 8 \), \( AC = 6 \), \( BC = 10 \).
Calculate Circumradius (\( \alpha \)), Area (\( \beta \)), and Perimeter (\( \gamma \)): - Circumradius \( \alpha = 5 \), Area \( \beta = 24 \), Perimeter \( \gamma = 24 \)
Compute \( \alpha + \beta + \gamma \):
\(\alpha + \beta + \gamma = 5 + 24 + 24 = 53\)
So, the correct option is: \( \mathbf{53} \)
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: