Question:

Let(5,a4)(5,\frac{a}{4}),be the circumcenter of a triangle with vertices A (a, -2),B (a, 6)and C (a4,2)(\frac{a}{4},-2).Let α\alpha denote the circumradius, β\beta denote the area and γ\gamma denote the perimeter of the triangle. Then α+β+γ\alpha+\beta+\gamma is

Updated On: Mar 20, 2025
  • 60
  • 53
  • 62
  • 30
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Given points are A(1,2) A(1, -2) , B(a,6) B(a, 6) , and C(32,2) C\left(\frac{3}{2}, -2\right) .  
- The circumcenter O O is (53,4) \left(\frac{5}{3}, 4\right) .

Calculate AO AO and BO BO (Using Distance Formula): - AO=BO AO = BO :

(a5)2+(a4+2)2=(a5)2+(a46)2(a - 5)^2 + \left(\frac{a}{4} + 2\right)^2 = (a - 5)^2 + \left(\frac{a}{4} - 6\right)^2
Solving this gives a=8 a = 8 .

Determine Side Lengths of the Triangle: - With a=8 a = 8 : AB=8 AB = 8 , AC=6 AC = 6 , BC=10 BC = 10 .

Calculate Circumradius (α \alpha ), Area (β \beta ), and Perimeter (γ \gamma ): - Circumradius α=5 \alpha = 5 , Area β=24 \beta = 24 , Perimeter γ=24 \gamma = 24

Compute α+β+γ \alpha + \beta + \gamma :

α+β+γ=5+24+24=53\alpha + \beta + \gamma = 5 + 24 + 24 = 53

So, the correct option is: 53 \mathbf{53}

Was this answer helpful?
1
0

Top Questions on Coordinate Geometry

View More Questions