Given points are \( A(1, -2) \), \( B(a, 6) \), and \( C\left(\frac{3}{2}, -2\right) \).
- The circumcenter \( O \) is \( \left(\frac{5}{3}, 4\right) \).
Calculate \( AO \) and \( BO \) (Using Distance Formula): - \( AO = BO \):
\((a - 5)^2 + \left(\frac{a}{4} + 2\right)^2 = (a - 5)^2 + \left(\frac{a}{4} - 6\right)^2\)
Solving this gives \( a = 8 \).
Determine Side Lengths of the Triangle: - With \( a = 8 \): \( AB = 8 \), \( AC = 6 \), \( BC = 10 \).
Calculate Circumradius (\( \alpha \)), Area (\( \beta \)), and Perimeter (\( \gamma \)): - Circumradius \( \alpha = 5 \), Area \( \beta = 24 \), Perimeter \( \gamma = 24 \)
Compute \( \alpha + \beta + \gamma \):
\(\alpha + \beta + \gamma = 5 + 24 + 24 = 53\)
So, the correct option is: \( \mathbf{53} \)
If the four distinct points $ (4, 6) $, $ (-1, 5) $, $ (0, 0) $ and $ (k, 3k) $ lie on a circle of radius $ r $, then $ 10k + r^2 $ is equal to
The shortest distance between the curves $ y^2 = 8x $ and $ x^2 + y^2 + 12y + 35 = 0 $ is:
Let the equation $ x(x+2) * (12-k) = 2 $ have equal roots. The distance of the point $ \left(k, \frac{k}{2}\right) $ from the line $ 3x + 4y + 5 = 0 $ is
Match List-I with List-II: List-I