The given parabolas are symmetric about the line \( y = x \). Tangents at A and B must be parallel to \( y = x \) line, so slope of the tangents
1. \( \left( \frac{dy}{dx} \right)_{\min A} = 1 = \left( \frac{dy}{dx} \right)_{\min B} \)
For \( y = x^2 + 2 \), \( \frac{dy}{dx} = 2x \) \( 2x = 1 \) \( x = \frac{1}{2} \) \( y = \left( \frac{1}{2} \right)^2 + 2 = \frac{1}{4} + 2 = \frac{9}{4} \)
So, point A is \( \left( \frac{1}{2}, \frac{9}{4} \right) \). For \( x = y^2 + 2 \), \( 1 = 2y \frac{dy}{dx} \) \( \frac{dy}{dx} = \frac{1}{2y} \) \( \frac{1}{2y} = 1 \) \( y = \frac{1}{2} \) \( x = \left( \frac{1}{2} \right)^2 + 2 = \frac{1}{4} + 2 = \frac{9}{4} \)
So, point B is \( \left( \frac{9}{4}, \frac{1}{2} \right) \).
Distance between A and B: \( AB = \sqrt{ \left( \frac{9}{4} - \frac{1}{2} \right)^2 + \left( \frac{1}{2} - \frac{9}{4} \right)^2 } \) \( AB = \sqrt{ 2 \left( \frac{7}{4} \right)^2 } \) \( AB = \frac{7\sqrt{2}}{4} \)
The radius of the smallest circle is half of the distance AB. Radius = \( \frac{AB}{2} = \frac{7\sqrt{2}}{8} \)
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: