The given parabolas are symmetric about the line \( y = x \). Tangents at A and B must be parallel to \( y = x \) line, so slope of the tangents
1. \( \left( \frac{dy}{dx} \right)_{\min A} = 1 = \left( \frac{dy}{dx} \right)_{\min B} \)
For \( y = x^2 + 2 \), \( \frac{dy}{dx} = 2x \) \( 2x = 1 \) \( x = \frac{1}{2} \) \( y = \left( \frac{1}{2} \right)^2 + 2 = \frac{1}{4} + 2 = \frac{9}{4} \)
So, point A is \( \left( \frac{1}{2}, \frac{9}{4} \right) \). For \( x = y^2 + 2 \), \( 1 = 2y \frac{dy}{dx} \) \( \frac{dy}{dx} = \frac{1}{2y} \) \( \frac{1}{2y} = 1 \) \( y = \frac{1}{2} \) \( x = \left( \frac{1}{2} \right)^2 + 2 = \frac{1}{4} + 2 = \frac{9}{4} \)
So, point B is \( \left( \frac{9}{4}, \frac{1}{2} \right) \).
Distance between A and B: \( AB = \sqrt{ \left( \frac{9}{4} - \frac{1}{2} \right)^2 + \left( \frac{1}{2} - \frac{9}{4} \right)^2 } \) \( AB = \sqrt{ 2 \left( \frac{7}{4} \right)^2 } \) \( AB = \frac{7\sqrt{2}}{4} \)
The radius of the smallest circle is half of the distance AB. Radius = \( \frac{AB}{2} = \frac{7\sqrt{2}}{8} \)
If the four distinct points $ (4, 6) $, $ (-1, 5) $, $ (0, 0) $ and $ (k, 3k) $ lie on a circle of radius $ r $, then $ 10k + r^2 $ is equal to
The shortest distance between the curves $ y^2 = 8x $ and $ x^2 + y^2 + 12y + 35 = 0 $ is:
Let the equation $ x(x+2) * (12-k) = 2 $ have equal roots. The distance of the point $ \left(k, \frac{k}{2}\right) $ from the line $ 3x + 4y + 5 = 0 $ is
Match List-I with List-II: List-I