If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)
\( \frac{9}{4} \)
\( \frac{4}{3} \)
Given the equation: \[ 12x^2 - 7x + 1 = 0, \quad x = \frac{1}{3}, \frac{1}{4} \] Let \[ P\left( A \mid B \right) = \frac{1}{3} \quad \text{and} \quad P\left( B \mid A \right) = \frac{1}{4} \] From the given, we have: \[ P(A \cap B) = \frac{1}{3} \quad \text{and} \quad P(B) = \frac{1}{4} \] This implies: \[ P(B) = 0.3 \quad \text{and} \quad P(A) = 0.4 \] The formula for the union of two events is: \[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \] Substitute the values: \[ P(A \cup B) = 0.3 + 0.4 - 0.1 = 0.6 \] Now, we calculate \( P(A \cup B) \): \[ P(A \cup B) = \frac{P(A \cap B)}{P(A \cup B)} \] Substitute the known values: \[ P(A \cup B) = \frac{1 - P(A \cap B)}{P(A \cup B)} = \frac{1 - 0.1}{1 - 0.6} = \frac{9}{4} \]
If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to: