If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)
\( \frac{9}{4} \)
\( \frac{4}{3} \)
Given the equation: \[ 12x^2 - 7x + 1 = 0, \quad x = \frac{1}{3}, \frac{1}{4} \] Let \[ P\left( A \mid B \right) = \frac{1}{3} \quad \text{and} \quad P\left( B \mid A \right) = \frac{1}{4} \] From the given, we have: \[ P(A \cap B) = \frac{1}{3} \quad \text{and} \quad P(B) = \frac{1}{4} \] This implies: \[ P(B) = 0.3 \quad \text{and} \quad P(A) = 0.4 \] The formula for the union of two events is: \[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \] Substitute the values: \[ P(A \cup B) = 0.3 + 0.4 - 0.1 = 0.6 \] Now, we calculate \( P(A \cup B) \): \[ P(A \cup B) = \frac{P(A \cap B)}{P(A \cup B)} \] Substitute the known values: \[ P(A \cup B) = \frac{1 - P(A \cap B)}{P(A \cup B)} = \frac{1 - 0.1}{1 - 0.6} = \frac{9}{4} \]
P and Q play chess frequently against each other. Of these matches, P has won 80% of the matches, drawn 15% of the matches, and lost 5% of the matches.
If they play 3 more matches, what is the probability of P winning exactly 2 of these 3 matches?
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.