If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)
\( \frac{9}{4} \)
\( \frac{4}{3} \)
Given the equation: \[ 12x^2 - 7x + 1 = 0, \quad x = \frac{1}{3}, \frac{1}{4} \] Let \[ P\left( A \mid B \right) = \frac{1}{3} \quad \text{and} \quad P\left( B \mid A \right) = \frac{1}{4} \] From the given, we have: \[ P(A \cap B) = \frac{1}{3} \quad \text{and} \quad P(B) = \frac{1}{4} \] This implies: \[ P(B) = 0.3 \quad \text{and} \quad P(A) = 0.4 \] The formula for the union of two events is: \[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \] Substitute the values: \[ P(A \cup B) = 0.3 + 0.4 - 0.1 = 0.6 \] Now, we calculate \( P(A \cup B) \): \[ P(A \cup B) = \frac{P(A \cap B)}{P(A \cup B)} \] Substitute the known values: \[ P(A \cup B) = \frac{1 - P(A \cap B)}{P(A \cup B)} = \frac{1 - 0.1}{1 - 0.6} = \frac{9}{4} \]
P and Q play chess frequently against each other. Of these matches, P has won 80% of the matches, drawn 15% of the matches, and lost 5% of the matches.
If they play 3 more matches, what is the probability of P winning exactly 2 of these 3 matches?
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is: