
Let's simplify the given circuit.
The circuit consists of three resistors, each with a resistance of $ r/3 $. Let's label them $ R_1 $, $ R_2 $, and $ R_3 $.
We know:
$ \frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} $
$ \Rightarrow \frac{1}{R_p} = \frac{3}{r} + \frac{3}{r} + \frac{3}{r} = \frac{9}{r} $
$ \Rightarrow R_p = \frac{r}{9} $
Final Answer:
The final answer is $ \boxed{r/9} $.
If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)
Match List - I with List - II:
List - I:
(A) Amylase
(B) Cellulose
(C) Glycogen
(D) Amylopectin
List - II:
(I) β-C1-C4 plant
(II) α-C1-C4 animal
(III) α-C1-C4 α-C1-C6 plant
(IV) α-C1-C4 plant