We are tasked with solving the equation \( x^2 + 3x + 2 = \min \left( |x - 3|, |x + 2| \right) \). First, we analyze the behavior of the minimum function, which requires us to consider the cases for \( |x - 3| \) and \( |x + 2| \). After checking these cases, we find that the equation has exactly one real solution.
Final Answer: \( 1 \).
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
Consider the lines $ x(3\lambda + 1) + y(7\lambda + 2) = 17\lambda + 5 $. If P is the point through which all these lines pass and the distance of L from the point $ Q(3, 6) $ is \( d \), then the distance of L from the point \( (3, 6) \) is \( d \), then the value of \( d^2 \) is
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
An organic compound (X) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is not readily oxidised. On reduction it gives $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{Y})\right.$ which reacts with HBr to give a bromide (Z) which is converted to Grignard reagent. This Grignard reagent on reaction with (X) followed by hydrolysis give 2,3-dimethylbutan-2-ol. Compounds (X), (Y) and (Z) respectively are: