To find the molar solubility of \( \text{Cr(OH)}_3 \) in water, we begin by understanding the dissolution equation and the relationship between solubility product (\( K_{sp} \)) and molar solubility (\( s \)).
The dissolution equilibrium of \( \text{Cr(OH)}_3 \) in water can be given by:
\(\text{Cr(OH)}_3 (s) \rightleftharpoons \text{Cr}^{3+} (aq) + 3\text{OH}^- (aq)\)
The expression for the solubility product \( K_{sp} \) is:
\(K_{sp} = [\text{Cr}^{3+}][\text{OH}^-]^3\)
If \( s \) is the molar solubility of \( \text{Cr(OH)}_3 \), then the concentration of \( \text{Cr}^{3+} \) will be \( s \) and the concentration of \( \text{OH}^- \) will be \( 3s \). Substituting these into the expression for \( K_{sp} \):
\(K_{sp} = (s)(3s)^3 = 27s^4\)
Given \( K_{sp} = 1.6 \times 10^{-30} \), we substitute this value into the equation:
\(1.6 \times 10^{-30} = 27s^4\)
Solving for \( s \), we get:
\(s^4 = \frac{1.6 \times 10^{-30}}{27}\)
Taking the fourth root of both sides gives:
\(s = \sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}\)
Thus, the molar solubility of \( \text{Cr(OH)}_3 \) in water is given by the expression:
\(s = \sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}\)
The dissolution of \( {Cr(OH)}_3 \) is represented as: \[ {Cr(OH)}_3 (s) \rightleftharpoons {Cr}^{3+} (aq) + 3 \, {OH}^- (aq) \] Let the molar solubility of \( {Cr(OH)}_3 \) be \( s \). Therefore, the concentration of \( {Cr}^{3+} \) is \( s \) and the concentration of \( {OH}^- \) is \( 3s \).
The solubility product expression is: \[ K_{{sp}} = [{Cr}^{3+}][{OH}^-]^3 = s(3s)^3 = 27s^4 \] Given \( K_{{sp}} = 1.6 \times 10^{-30} \), we can solve for \( s \): \[ 1.6 \times 10^{-30} = 27s^4 \] \[ s^4 = \frac{1.6 \times 10^{-30}}{27} \] \[ s = \sqrt[4]{\frac{1.6 \times 10^{-30}}{27}} \]
Thus, the molar solubility is \[ s = \sqrt[4]{\frac{1.6 \times 10^{-30}}{27}} \].
The molar solubility(s) of zirconium phosphate with molecular formula \( \text{Zr}^{4+} \text{PO}_4^{3-} \) is given by relation:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: