The dissolution of \( {Cr(OH)}_3 \) is represented as: \[ {Cr(OH)}_3 (s) \rightleftharpoons {Cr}^{3+} (aq) + 3 \, {OH}^- (aq) \] Let the molar solubility of \( {Cr(OH)}_3 \) be \( s \). Therefore, the concentration of \( {Cr}^{3+} \) is \( s \) and the concentration of \( {OH}^- \) is \( 3s \).
The solubility product expression is: \[ K_{{sp}} = [{Cr}^{3+}][{OH}^-]^3 = s(3s)^3 = 27s^4 \] Given \( K_{{sp}} = 1.6 \times 10^{-30} \), we can solve for \( s \): \[ 1.6 \times 10^{-30} = 27s^4 \] \[ s^4 = \frac{1.6 \times 10^{-30}}{27} \] \[ s = \sqrt[4]{\frac{1.6 \times 10^{-30}}{27}} \]
Thus, the molar solubility is \[ s = \sqrt[4]{\frac{1.6 \times 10^{-30}}{27}} \].