Let P be the foot of the perpendicular from the point \( (1, 2, 2) \) on the line
\[
\frac{x-1}{1} = \frac{y + 1}{-1} = \frac{z - 2}{2}
\]
Let the line \( \mathbf{r} = (-\hat{i} + \hat{j} - 2\hat{k}) + \lambda (\hat{i} - \hat{j} + \hat{k})\), \( \lambda \in \mathbb{R} \), intersect the line \(L\) at \(Q\). Then \( 2(PQ)^2 \) is equal to: