Step 1: Dissociation of Barium Phosphate
The chemical formula of barium phosphate is:
\[
Ba_3(PO_4)_2
\]
It dissociates as:
\[
Ba_3(PO_4)_2 \rightleftharpoons 3Ba^{2+} + 2PO_4^{3-}
\]
Step 2: Express Ion Concentrations in Terms of \( x \)
- The solubility is \( x \) g per 100 mL.
- The molar solubility is \( \frac{x}{M} \).
From the dissociation:
- \( [Ba^{2+}] = 3 \times \frac{x}{M} \)
- \( [PO_4^{3-}] = 2 \times \frac{x}{M} \)
Step 3: Write the Solubility Product Expression
\[
K_{sp} = [Ba^{2+}]^3 \times [PO_4^{3-}]^2
\]
\[
K_{sp} = \left( 3 \times \frac{x}{M} \right)^3 \times \left( 2 \times \frac{x}{M} \right)^2
\]
\[
= 27 \times \left( \frac{x}{M} \right)^3 \times 4 \times \left( \frac{x}{M} \right)^2
\]
\[
= 108 \times \left( \frac{x}{M} \right)^5
\]
\[
= 1.08 \times 10^2 \times \left( \frac{x}{M} \right)^5
\]
Step 4: Compare with the Given Equation
\[
K_{sp} = 1.08 \times \left( \frac{x}{M} \right)^a \times (10)^b
\]
Thus, we get:
\[
a = 5, \quad b = 7
\]