To determine which hydroxide will precipitate first when NH\(_4\)OH is added to a solution containing 1M A\(^{2+}\) and 1M B\(^{3+}\) ions, we need to compare their solubility product constants (K\(_{sp}\)).
Given:
For precipitation to occur, the ionic product of the hydroxide must exceed the K\(_{sp}\) value.
1. For A(OH)\(_2\), the precipitation condition is: \[ [A^{2+}][OH^-]^2 > K_{sp}[A(OH)_2] \]
Given [A\(^{2+}\)] = 1M, \([OH^-]^2 > 9 \times 10^{-10}\)
Simplifying: \[ [OH^-] > \sqrt{9 \times 10^{-10}} = 3 \times 10^{-5} \text{ M} \]
2. For B(OH)\(_3\), the precipitation condition is: \[ [B^{3+}][OH^-]^3 > K_{sp}[B(OH)_3] \]
Given [B\(^{3+}\)] = 1M, \([OH^-]^3 > 27 \times 10^{-18}\)
Simplifying: \[ [OH^-] > \sqrt[3]{27 \times 10^{-18}} = 3 \times 10^{-6} \text{ M} \]
Since \([OH^-] > 3 \times 10^{-6}\) M is required for B(OH)\(_3\) and \([OH^-] > 3 \times 10^{-5}\) M for A(OH)\(_2\), B(OH)\(_3\) will precipitate at a lower concentration of hydroxide ions.
Thus, B(OH)\(_3\) will precipitate before A(OH)\(_2\).
The molar solubility(s) of zirconium phosphate with molecular formula \( \text{Zr}^{4+} \text{PO}_4^{3-} \) is given by relation:
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: