To determine the order of precipitation when NH4OH is added to a solution containing 1M A2+ and 1M B3+ ions, we need to calculate the concentration of hydroxide ions [OH-] required to reach the solubility product (Ksp) of each hydroxide.
The solubility product expression is:
\(K_{sp}[A(OH)_2] = [A^{2+}][OH^-]^2\)
Given \(K_{sp}[A(OH)_2] = 9 \times 10^{-10}\) and assuming equilibrium concentrations are approached as precipitation starts, with \([A^{2+}] = 1 \text{ M}\), we find:
\(9 \times 10^{-10} = 1 \times [OH^-]^2\)
Solve for [OH-]:
\([OH^-] = \sqrt{9 \times 10^{-10}} = 3 \times 10^{-5} \text{ M}\)
The solubility product expression is:
\(K_{sp}[B(OH)_3] = [B^{3+}][OH^-]^3\)
Given \(K_{sp}[B(OH)_3] = 27 \times 10^{-18}\) and with \([B^{3+}] = 1 \text{ M}\), we find:
\(27 \times 10^{-18} = 1 \times [OH^-]^3\)
Solve for [OH-]:
\([OH^-] = \sqrt[3]{27 \times 10^{-18}} = 3 \times 10^{-6} \text{ M}\)
Conclusion: B(OH)3 will precipitate before A(OH)2.
To determine which hydroxide will precipitate first when NH\(_4\)OH is added to a solution containing 1M A\(^{2+}\) and 1M B\(^{3+}\) ions, we need to compare their solubility product constants (K\(_{sp}\)).
Given:
For precipitation to occur, the ionic product of the hydroxide must exceed the K\(_{sp}\) value.
1. For A(OH)\(_2\), the precipitation condition is: \[ [A^{2+}][OH^-]^2 > K_{sp}[A(OH)_2] \]
Given [A\(^{2+}\)] = 1M, \([OH^-]^2 > 9 \times 10^{-10}\)
Simplifying: \[ [OH^-] > \sqrt{9 \times 10^{-10}} = 3 \times 10^{-5} \text{ M} \]
2. For B(OH)\(_3\), the precipitation condition is: \[ [B^{3+}][OH^-]^3 > K_{sp}[B(OH)_3] \]
Given [B\(^{3+}\)] = 1M, \([OH^-]^3 > 27 \times 10^{-18}\)
Simplifying: \[ [OH^-] > \sqrt[3]{27 \times 10^{-18}} = 3 \times 10^{-6} \text{ M} \]
Since \([OH^-] > 3 \times 10^{-6}\) M is required for B(OH)\(_3\) and \([OH^-] > 3 \times 10^{-5}\) M for A(OH)\(_2\), B(OH)\(_3\) will precipitate at a lower concentration of hydroxide ions.
Thus, B(OH)\(_3\) will precipitate before A(OH)\(_2\).
The molar solubility(s) of zirconium phosphate with molecular formula \( \text{Zr}^{4+} \text{PO}_4^{3-} \) is given by relation:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: