Step 1: Substituting the given integral
We need to evaluate: \[ I = \int \sqrt{1 - \sin 2x} \, dx. \] Using the identity: \[ 1 - \sin 2x = \cos^2 x + \sin^2 x - \sin 2x. \] Using the identity: \[ 1 - \sin 2x = (\cos x - \sin x)^2. \] Thus, \[ I = \int \sqrt{(\cos x - \sin x)^2} \, dx. \] Since \( \sqrt{(\cos x - \sin x)^2} = |\cos x - \sin x| \), we need to determine its sign.
Step 2: Evaluating \( \cos x - \sin x \)
- If \( x \notin \left[ 2n\pi - \frac{\pi}{4}, 2n\pi + \frac{3\pi}{4} \right] \), then \( \cos x - \sin x \) is positive.
- Thus, \( |\cos x - \sin x| = \cos x - \sin x \). \[ I = \int (\cos x - \sin x) \, dx. \] Step 3: Evaluating the integral
\[ I = \int \cos x \, dx - \int \sin x \, dx. \] \[ I = \sin x + \cos x + c. \] Step 4: Conclusion
Thus, the correct answer is: \[ \cos x + \sin x + c. \]
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for: