Step 1: Substituting the given integral
We need to evaluate: \[ I = \int \sqrt{1 - \sin 2x} \, dx. \] Using the identity: \[ 1 - \sin 2x = \cos^2 x + \sin^2 x - \sin 2x. \] Using the identity: \[ 1 - \sin 2x = (\cos x - \sin x)^2. \] Thus, \[ I = \int \sqrt{(\cos x - \sin x)^2} \, dx. \] Since \( \sqrt{(\cos x - \sin x)^2} = |\cos x - \sin x| \), we need to determine its sign.
Step 2: Evaluating \( \cos x - \sin x \)
- If \( x \notin \left[ 2n\pi - \frac{\pi}{4}, 2n\pi + \frac{3\pi}{4} \right] \), then \( \cos x - \sin x \) is positive.
- Thus, \( |\cos x - \sin x| = \cos x - \sin x \). \[ I = \int (\cos x - \sin x) \, dx. \] Step 3: Evaluating the integral
\[ I = \int \cos x \, dx - \int \sin x \, dx. \] \[ I = \sin x + \cos x + c. \] Step 4: Conclusion
Thus, the correct answer is: \[ \cos x + \sin x + c. \]
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?