Step 1: Substituting the given integral
We need to evaluate: \[ I = \int \sqrt{1 - \sin 2x} \, dx. \] Using the identity: \[ 1 - \sin 2x = \cos^2 x + \sin^2 x - \sin 2x. \] Using the identity: \[ 1 - \sin 2x = (\cos x - \sin x)^2. \] Thus, \[ I = \int \sqrt{(\cos x - \sin x)^2} \, dx. \] Since \( \sqrt{(\cos x - \sin x)^2} = |\cos x - \sin x| \), we need to determine its sign.
Step 2: Evaluating \( \cos x - \sin x \)
- If \( x \notin \left[ 2n\pi - \frac{\pi}{4}, 2n\pi + \frac{3\pi}{4} \right] \), then \( \cos x - \sin x \) is positive.
- Thus, \( |\cos x - \sin x| = \cos x - \sin x \). \[ I = \int (\cos x - \sin x) \, dx. \] Step 3: Evaluating the integral
\[ I = \int \cos x \, dx - \int \sin x \, dx. \] \[ I = \sin x + \cos x + c. \] Step 4: Conclusion
Thus, the correct answer is: \[ \cos x + \sin x + c. \]
If two vectors \( \mathbf{a} \) and \( \mathbf{b} \) satisfy the equation:
\[ \frac{|\mathbf{a} + \mathbf{b}| + |\mathbf{a} - \mathbf{b}|}{|\mathbf{a} + \mathbf{b}| - |\mathbf{a} - \mathbf{b}|} = \sqrt{2} + 1, \]
then the value of
\[ \frac{|\mathbf{a} + \mathbf{b}|}{|\mathbf{a} - \mathbf{b}|} \]
is equal to:
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))