Assuming the mean free path remains constant, the collision frequency \(f\) is proportional to the square root of temperature (\(\sqrt{T}\)):
\[ f \propto \sqrt{T} \]
Given:
\[ T_1 = 27^\circ C = 300 \, \text{K}, \quad T_2 = 127^\circ C = 400 \, \text{K} \]
The ratio of collision frequencies is:
\[ \frac{f_2}{f_1} = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{400}{300}} = \sqrt{\frac{4}{3}} \]
Therefore:
\[ f_2 = \sqrt{\frac{4}{3}} \cdot f_1 = \frac{2}{\sqrt{3}} f_1 \]

Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
