Step 1: Define the given quantities
\[
OM = r \cos \theta, \quad PM = r \sin \theta.
\]
Given:
\[
r = 8, \quad OM = 4 \Rightarrow \cos \theta = \frac{4}{8} = \frac{1}{2}.
\]
Thus, \( \theta = \frac{\pi}{3} \) and \( \sin \theta = \frac{\sqrt{3}}{2} \).
Step 2: Differentiate \( PM = r \sin \theta \)
\[
\frac{d}{dt} (PM) = r \cos \theta \cdot \frac{d\theta}{dt}.
\]
Substituting values:
\[
\frac{d}{dt} (PM) = 8 \cdot \frac{6}{2} = 24.
\]