
In the following figure chord MN and chord RS intersect at point D. If RD = 15, DS = 4, MD = 8, find DN by completing the following activity: 
Activity :
\(\therefore\) MD \(\times\) DN = \(\boxed{\phantom{SD}}\) \(\times\) DS \(\dots\) (Theorem of internal division of chords)
\(\therefore\) \(\boxed{\phantom{8}}\) \(\times\) DN = 15 \(\times\) 4
\(\therefore\) DN = \(\frac{\boxed{\phantom{60}}}{8}\)
\(\therefore\) DN = \(\boxed{\phantom{7.5}}\)
In the following diagram, the work done in moving a point charge from point P to point A, B and C are \( W_A, W_B, W_C \) respectively. Then (A, B, C are points on semicircle and point charge \( q \) is at the centre of semicircle)
