Step 1: Compute the First Derivative
Differentiate \( f(x) \):
\[
f'(x) = \frac{d}{dx} \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right).
\]
\[
f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{2x^{3/2}}.
\]
\[
f'(x) = \frac{1}{2} \left( \frac{1}{\sqrt{x}} - \frac{1}{x^{3/2}} \right).
\]
\[
f'(x) = \frac{1}{2} \times \frac{x - 1}{x^{3/2}}.
\]
Step 2: Find When \( f'(x)>0 \)
For the function to be strictly increasing:
\[
\frac{(x - 1)}{x^{3/2}}>0.
\]
Since \( x^{3/2} \) is always positive for \( x>0 \), the sign of \( f'(x) \) depends on \( (x - 1) \).
Step 3: Find the Interval Where \( f'(x)>0 \)
- \( x - 1>0 \) when \( x>1 \), so \( f'(x)>0 \).
- \( x - 1<0 \) when \( 0<x<1 \), so \( f'(x)<0 \), meaning \( f(x) \) is decreasing in this region.
Step 4: Conclusion
Thus, the function is strictly increasing for:
\[
\mathbf{(1, \infty)}.
\]