Question:

The interval containing all the real values of x x such that the real valued function f(x)=x+1x f(x) = \sqrt{x} + \frac{1}{\sqrt{x}} is strictly increasing is:

Show Hint

To find the increasing or decreasing nature of a function, compute f(x) f'(x) and check where it is positive or negative.
Updated On: Mar 24, 2025
  • (1,) (1, \infty)
  • (0,1) (0, 1)
  • (,0)(1,) (-\infty, 0) \cup (1, \infty)
  • (,0) (-\infty, 0)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation


Step 1: Compute the First Derivative
Differentiate f(x) f(x) : f(x)=ddx(x+1x). f'(x) = \frac{d}{dx} \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right). f(x)=12x12x3/2. f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{2x^{3/2}}. f(x)=12(1x1x3/2). f'(x) = \frac{1}{2} \left( \frac{1}{\sqrt{x}} - \frac{1}{x^{3/2}} \right). f(x)=12×x1x3/2. f'(x) = \frac{1}{2} \times \frac{x - 1}{x^{3/2}}. Step 2: Find When f(x)>0 f'(x)>0
For the function to be strictly increasing: (x1)x3/2>0. \frac{(x - 1)}{x^{3/2}}>0. Since x3/2 x^{3/2} is always positive for x>0 x>0 , the sign of f(x) f'(x) depends on (x1) (x - 1) .
Step 3: Find the Interval Where f(x)>0 f'(x)>0
- x1>0 x - 1>0 when x>1 x>1 , so f(x)>0 f'(x)>0 .
- x1<0 x - 1<0 when 0<x<1 0<x<1 , so f(x)<0 f'(x)<0 , meaning f(x) f(x) is decreasing in this region.
Step 4: Conclusion
Thus, the function is strictly increasing for: (1,). \mathbf{(1, \infty)}.
Was this answer helpful?
0
0

Top Questions on Functions

View More Questions