Verification of Statement I: Using Taylor series expansions about \( x = 0 \): \[ \tan^{-1}x = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots \] \[ \log_e \sqrt{\frac{1+x}{1-x}} = \frac{1}{2} \left( \log(1+x) - \log(1-x) \right) = x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots \] Substituting into the limit: \[ \frac{(x - \frac{x^3}{3} + \frac{x^5}{5}) + (x + \frac{x^3}{3} + \frac{x^5}{5}) - 2x}{x^5} = \frac{\frac{2x^5}{5}}{x^5} = \frac{2}{5} \] Thus, Statement I is true.
Verification of Statement II: Let \( y = \frac{2}{x^{1-x}} \).
Taking natural log: \[ \ln y = \frac{2}{1-x} \ln x \] Using L'Hôpital's rule as \( x \to 1 \): \[ \lim_{x \to 1} \frac{2\ln x}{1-x} = \lim_{x \to 1} \frac{2/x}{-1} = -2 \] Thus: \[ \lim_{x \to 1} y = e^{-2} = \frac{1}{e^2} \] Therefore, Statement II is true.
Consider two statements:
Statement 1: $ \lim_{x \to 0} \frac{\tan^{-1} x + \ln \left( \frac{1+x}{1-x} \right) - 2x}{x^5} = \frac{2}{5} $
Statement 2: $ \lim_{x \to 1} x \left( \frac{2}{1-x} \right) = e^2 \; \text{and can be solved by the method} \lim_{x \to 1} \frac{f(x)}{g(x) - 1} $