Verification of Statement I: Using Taylor series expansions about \( x = 0 \): \[ \tan^{-1}x = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots \] \[ \log_e \sqrt{\frac{1+x}{1-x}} = \frac{1}{2} \left( \log(1+x) - \log(1-x) \right) = x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots \] Substituting into the limit: \[ \frac{(x - \frac{x^3}{3} + \frac{x^5}{5}) + (x + \frac{x^3}{3} + \frac{x^5}{5}) - 2x}{x^5} = \frac{\frac{2x^5}{5}}{x^5} = \frac{2}{5} \] Thus, Statement I is true.
Verification of Statement II: Let \( y = \frac{2}{x^{1-x}} \).
Taking natural log: \[ \ln y = \frac{2}{1-x} \ln x \] Using L'Hôpital's rule as \( x \to 1 \): \[ \lim_{x \to 1} \frac{2\ln x}{1-x} = \lim_{x \to 1} \frac{2/x}{-1} = -2 \] Thus: \[ \lim_{x \to 1} y = e^{-2} = \frac{1}{e^2} \] Therefore, Statement II is true.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: