We are given the function: \[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \left( \frac{\tan \left( \frac{x}{2^{r+1}} \right) - \tan \left( \frac{x}{2^{r+2}} \right)}{1} \right) \] This expression simplifies to: \[ f(x) = \tan x \]
Step 2: Set Up the Limit CalculationNext, we calculate the limit: \[ \lim_{x \to 0} \frac{e^x - e^{f(x)}}{x - f(x)} = \lim_{x \to 0} \frac{e^x - e^{\tan x}}{x - \tan x} \]
Step 3: Apply L'Hopital's RuleSince this is an indeterminate form of type \( \frac{0}{0} \), we apply L'Hopital's Rule, which involves differentiating the numerator and denominator: \[ \lim_{x \to 0} \frac{e^x - e^{\tan x}}{x - \tan x} \] Differentiating the numerator: \[ \frac{d}{dx} \left( e^x - e^{\tan x} \right) = e^x - e^{\tan x} \cdot \sec^2 x \] Differentiating the denominator: \[ \frac{d}{dx} (x - \tan x) = 1 - \sec^2 x \] Substituting at \( x = 0 \): \[ \lim_{x \to 0} \frac{e^x - e^{\tan x}}{x - \tan x} = 1 \]
Final Answer: 1