We are given the function: \[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \left( \frac{\tan \left( \frac{x}{2^{r+1}} \right) - \tan \left( \frac{x}{2^{r+2}} \right)}{1} \right) \] This expression simplifies to: \[ f(x) = \tan x \]
Step 2: Set Up the Limit CalculationNext, we calculate the limit: \[ \lim_{x \to 0} \frac{e^x - e^{f(x)}}{x - f(x)} = \lim_{x \to 0} \frac{e^x - e^{\tan x}}{x - \tan x} \]
Step 3: Apply L'Hopital's RuleSince this is an indeterminate form of type \( \frac{0}{0} \), we apply L'Hopital's Rule, which involves differentiating the numerator and denominator: \[ \lim_{x \to 0} \frac{e^x - e^{\tan x}}{x - \tan x} \] Differentiating the numerator: \[ \frac{d}{dx} \left( e^x - e^{\tan x} \right) = e^x - e^{\tan x} \cdot \sec^2 x \] Differentiating the denominator: \[ \frac{d}{dx} (x - \tan x) = 1 - \sec^2 x \] Substituting at \( x = 0 \): \[ \lim_{x \to 0} \frac{e^x - e^{\tan x}}{x - \tan x} = 1 \]
Final Answer: 1Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to