We are given the function: \[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \left( \frac{\tan \left( \frac{x}{2^{r+1}} \right) - \tan \left( \frac{x}{2^{r+2}} \right)}{1} \right) \] This expression simplifies to: \[ f(x) = \tan x \]
Step 2: Set Up the Limit CalculationNext, we calculate the limit: \[ \lim_{x \to 0} \frac{e^x - e^{f(x)}}{x - f(x)} = \lim_{x \to 0} \frac{e^x - e^{\tan x}}{x - \tan x} \]
Step 3: Apply L'Hopital's RuleSince this is an indeterminate form of type \( \frac{0}{0} \), we apply L'Hopital's Rule, which involves differentiating the numerator and denominator: \[ \lim_{x \to 0} \frac{e^x - e^{\tan x}}{x - \tan x} \] Differentiating the numerator: \[ \frac{d}{dx} \left( e^x - e^{\tan x} \right) = e^x - e^{\tan x} \cdot \sec^2 x \] Differentiating the denominator: \[ \frac{d}{dx} (x - \tan x) = 1 - \sec^2 x \] Substituting at \( x = 0 \): \[ \lim_{x \to 0} \frac{e^x - e^{\tan x}}{x - \tan x} = 1 \]
Final Answer: 1Given the function:
\[ f(x) = \begin{cases} \frac{(2x^2 - ax +1) - (ax^2 + 3bx + 2)}{x+1}, & \text{if } x \neq -1 \\ k, & \text{if } x = -1 \end{cases} \]
If \( a, b, k \in \mathbb{R} \) and \( f(x) \) is continuous for all \( x \), then the value of \( k \) is:
If \( f(x) \) is given as: \( f(x) = \begin{cases} 3ax - 2b, & x<1 ax + b + 1, & x<1 \end{cases} \) and \( \lim_{x \to 1} f(x) \) exists, then the relation between \( a \) and \( b \) is: