Let's begin by analyzing the given limit:
\[
\lim_{x \to \infty} \left( \frac{e}{1 - e} \left( \frac{1}{e} - \frac{x}{1 + x} \right) \right)^x.
\]
As \( x \to \infty \), we can simplify the expression inside the limit:
\[
\frac{x}{1 + x} \to 1 \quad \text{so} \quad \frac{1}{e} - \frac{x}{1 + x} \to \frac{1}{e} - 1.
\]
This yields:
\[
\lim_{x \to \infty} \left( \frac{e}{1 - e} \left( \frac{1}{e} - 1 \right) \right)^x.
\]
Now, solving for \( \alpha \), we get \( \alpha = e^{-1} \). The expression for \( \frac{\log_e \alpha}{1 + \log_e \alpha} \) becomes:
\[
\frac{\log_e e^{-1}}{1 + \log_e e^{-1}} = \frac{-1}{1 - 1} = e^{-1}.
\]
Thus, the correct answer is \( e^{-1} \).