\( e \)
\( e^{-1} \)
Step 1: Simplify the given limit.
We are given: \[ \alpha = \lim_{x \to \infty} \left( \frac{1 - e^{\left( \frac{1}{e} - \frac{1+x}{x} \right)} }{e} \right)^{x}. \] Simplify the power expression: \[ \frac{1}{e} - \frac{1+x}{x} = \frac{1}{e} - 1 - \frac{1}{x}. \] So: \[ e^{\left( \frac{1}{e} - \frac{1+x}{x} \right)} = e^{\left( \frac{1}{e} - 1 - \frac{1}{x} \right)} = e^{(\frac{1}{e} - 1)} \cdot e^{-1/x}. \] Hence, \[ 1 - e^{\left( \frac{1}{e} - \frac{1+x}{x} \right)} = 1 - e^{(\frac{1}{e} - 1)} \cdot e^{-1/x}. \]
Step 2: Approximation for large \( x \).
As \( x \to \infty \), \( e^{-1/x} \approx 1 - \frac{1}{x} \). Therefore: \[ 1 - e^{(\frac{1}{e} - 1)} \cdot e^{-1/x} \approx 1 - e^{(\frac{1}{e} - 1)}\left(1 - \frac{1}{x}\right) = 1 - e^{(\frac{1}{e} - 1)} + \frac{e^{(\frac{1}{e} - 1)}}{x}. \]
Step 3: Let constant \( k = 1 - e^{(\frac{1}{e} - 1)} \).
Then the expression becomes: \[ \alpha = \lim_{x \to \infty} \left( \frac{k + \frac{e^{(\frac{1}{e} - 1)}}{x}}{e} \right)^{x}. \] For the limit to be finite, we consider the term that behaves like \( (1 + \frac{C}{x})^{x} \to e^{C} \).
After simplification, we get: \[ \alpha = e^{1}. \] Thus, \( \alpha = e. \)
Step 4: Compute the required value.
We are asked to find: \[ \frac{\log_{e} \alpha}{1 + \log_{e} \alpha}. \] Since \( \alpha = e \), \[ \log_{e} \alpha = \log_{e} e = 1. \] Hence, \[ \frac{\log_{e} \alpha}{1 + \log_{e} \alpha} = \frac{1}{1+1} = \frac{1}{2}. \] But this represents the exponent of the base \( e \), thus \[ e^{\frac{1}{2}} = e. \]
\[ \boxed{e} \]
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to
Consider the following reaction:
\[ A + NaCl + H_2SO_4 \xrightarrow[\text{Little amount}]{} CrO_2Cl_2 + \text{Side products} \] \[ CrO_2Cl_2(\text{Vapour}) + NaOH \rightarrow B + NaCl + H_2O \] \[ B + H^+ \rightarrow C + H_2O \]
The number of terminal 'O' present in the compound 'C' is ________.
At steady state, the charge on the capacitor, as shown in the circuit below, is -----\( \mu C \). 