1. Substitute $x = 1 + h$:
\[
\lim_{h \to 0} \frac{h(6 + \lambda \cos h) - \mu \sin h}{h^3} = -1
\]
2. Expand $\cos h$ and $\sin h$ using Taylor series:
\[
\cos h \approx 1 - \frac{h^2}{2}, \quad \sin h \approx h - \frac{h^3}{6}
\]
3. Substitute the expansions:
\[
\lim_{h \to 0} \frac{h \left( 6 + \lambda \left( 1 - \frac{h^2}{2} \right) \right) - \mu \left( h - \frac{h^3}{6} \right)}{h^3} = -1
\]
4. Simplify the expression:
\[
\lim_{h \to 0} \frac{h \left( 6 + \lambda - \frac{\lambda h^2}{2} \right) - \mu h + \frac{\mu h^3}{6}}{h^3} = -1
\]
\[
\lim_{h \to 0} \frac{6h + \lambda h - \frac{\lambda h^3}{2} - \mu h + \frac{\mu h^3}{6}}{h^3} = -1
\]
\[
\lim_{h \to 0} \frac{6 + \lambda - \mu - \frac{\lambda h^2}{2} + \frac{\mu h^2}{6}}{h^2} = -1
\]
5. Equate the coefficients:
\[
6 + \lambda - \mu = 0 \quad \text{and} \quad -\frac{\lambda}{2} + \frac{\mu}{6} = -1
\]
6. Solve the system of equations:
\[
\lambda + \mu = 18
\]
Therefore, the correct answer is (1) 18.