If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to
We need to evaluate the limit
\[ \lim_{x \to 1} \frac{(x-1)\big(6+\lambda \cos(x-1)\big) + \mu \sin(1-x)}{(x-1)^3} = -1, \]
and find \(\lambda+\mu\), where \(\lambda,\mu\in\mathbb{R}\).
Set \(h = x-1 \to 0\). Use the Taylor expansions near 0:
\[ \cos h = 1 - \frac{h^2}{2} + O(h^4), \qquad \sin(-h) = -\sin h = -h + \frac{h^3}{6} + O(h^5). \]
Step 1: Rewrite the numerator in terms of \(h\):
\[ N(h) = h\big(6+\lambda \cos h\big) + \mu \sin(1-x) = h\big(6+\lambda \cos h\big) + \mu(-\sin h). \]
Step 2: Substitute the series:
\[ \cos h = 1 - \frac{h^2}{2} + O(h^4), \quad \sin h = h - \frac{h^3}{6} + O(h^5). \] \[ N(h) = h\Big(6+\lambda\big(1-\tfrac{h^2}{2}+O(h^4)\big)\Big) + \mu\Big(-h+\tfrac{h^3}{6}+O(h^5)\Big). \]
Step 3: Collect terms up to \(h^3\):
\[ N(h) = h(6+\lambda) - \frac{\lambda}{2}h^3 - \mu h + \frac{\mu}{6}h^3 + O(h^5) = h\big((6+\lambda)-\mu\big) + h^3\Big(-\frac{\lambda}{2}+\frac{\mu}{6}\Big) + O(h^5). \]
Step 4: For the limit \(\dfrac{N(h)}{h^3}\) to be finite, the \(h\)-term must vanish:
\[ (6+\lambda)-\mu = 0 \;\;\Rightarrow\;\; \mu = 6+\lambda. \]
Step 5: The limit equals the coefficient of \(h^3\):
\[ \lim_{h\to 0}\frac{N(h)}{h^3} = -\frac{\lambda}{2}+\frac{\mu}{6} = -1. \] Substitute \(\mu=6+\lambda\): \[ -\frac{\lambda}{2} + \frac{6+\lambda}{6} = -1 \;\Rightarrow\; -\frac{\lambda}{2} + 1 + \frac{\lambda}{6} = -1 \;\Rightarrow\; 1 - \frac{\lambda}{3} = -1 \;\Rightarrow\; \lambda = 6. \] \[ \mu = 6 + \lambda = 12. \]
\[ \lambda + \mu = 6 + 12 = \boxed{18}. \]
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
