If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to
We need to evaluate the limit
\[ \lim_{x \to 1} \frac{(x-1)\big(6+\lambda \cos(x-1)\big) + \mu \sin(1-x)}{(x-1)^3} = -1, \]
and find \(\lambda+\mu\), where \(\lambda,\mu\in\mathbb{R}\).
Set \(h = x-1 \to 0\). Use the Taylor expansions near 0:
\[ \cos h = 1 - \frac{h^2}{2} + O(h^4), \qquad \sin(-h) = -\sin h = -h + \frac{h^3}{6} + O(h^5). \]
Step 1: Rewrite the numerator in terms of \(h\):
\[ N(h) = h\big(6+\lambda \cos h\big) + \mu \sin(1-x) = h\big(6+\lambda \cos h\big) + \mu(-\sin h). \]
Step 2: Substitute the series:
\[ \cos h = 1 - \frac{h^2}{2} + O(h^4), \quad \sin h = h - \frac{h^3}{6} + O(h^5). \] \[ N(h) = h\Big(6+\lambda\big(1-\tfrac{h^2}{2}+O(h^4)\big)\Big) + \mu\Big(-h+\tfrac{h^3}{6}+O(h^5)\Big). \]
Step 3: Collect terms up to \(h^3\):
\[ N(h) = h(6+\lambda) - \frac{\lambda}{2}h^3 - \mu h + \frac{\mu}{6}h^3 + O(h^5) = h\big((6+\lambda)-\mu\big) + h^3\Big(-\frac{\lambda}{2}+\frac{\mu}{6}\Big) + O(h^5). \]
Step 4: For the limit \(\dfrac{N(h)}{h^3}\) to be finite, the \(h\)-term must vanish:
\[ (6+\lambda)-\mu = 0 \;\;\Rightarrow\;\; \mu = 6+\lambda. \]
Step 5: The limit equals the coefficient of \(h^3\):
\[ \lim_{h\to 0}\frac{N(h)}{h^3} = -\frac{\lambda}{2}+\frac{\mu}{6} = -1. \] Substitute \(\mu=6+\lambda\): \[ -\frac{\lambda}{2} + \frac{6+\lambda}{6} = -1 \;\Rightarrow\; -\frac{\lambda}{2} + 1 + \frac{\lambda}{6} = -1 \;\Rightarrow\; 1 - \frac{\lambda}{3} = -1 \;\Rightarrow\; \lambda = 6. \] \[ \mu = 6 + \lambda = 12. \]
\[ \lambda + \mu = 6 + 12 = \boxed{18}. \]
For \( \alpha, \beta, \gamma \in \mathbb{R} \), if \[ \lim_{x \to 0} \frac{x^2 \sin(\alpha x) + (\gamma - 1)e^{x^2}}{\sin(2x - \beta x)} = 3, \] then \( \beta + \gamma - \alpha \) is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: