Step 1: Use the resonance condition for an LCR circuit
For maximum current in a series LCR circuit, resonance must occur. At resonance, the angular frequency \( \omega_0 \) is given by: \[ \omega_0 = \frac{1}{\sqrt{LC}} \]
Step 2: Convert all quantities to SI units
Step 3: Substitute values into the resonance formula
\[ \omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.1 \times 2.5 \times 10^{-8}}} \] \[ = \frac{1}{\sqrt{2.5 \times 10^{-9}}} \]
Step 4: Simplify the square root
\[ \sqrt{2.5 \times 10^{-9}} = \sqrt{2.5} \times \sqrt{10^{-9}} = 1.58 \times 10^{-4.5} \]
Step 5: Calculate the final value of \( \omega_0 \)
\[ \omega_0 = \frac{1}{1.58 \times 10^{-4.5}} = \frac{1}{1.58 \times 3.16 \times 10^{-5}} \approx \frac{1}{5 \times 10^{-5}} = 2 \times 10^4\,\text{rad/s} \]
Final Answer: The angular frequency at resonance is \( \boxed{2 \times 10^4\,\text{rad/s}} \).
In a resonance tube closed at one end. Resonance is obtained at lengths \( l_1 = 120 \, \text{cm} \) and \( l_2 = 200 \, \text{cm} \). If \( v_s = 340 \, \text{m/s} \), find the frequency of sound.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: