Step 1: Use the resonance condition for an LCR circuit
For maximum current in a series LCR circuit, resonance must occur. At resonance, the angular frequency \( \omega_0 \) is given by: \[ \omega_0 = \frac{1}{\sqrt{LC}} \]
Step 2: Convert all quantities to SI units
Step 3: Substitute values into the resonance formula
\[ \omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.1 \times 2.5 \times 10^{-8}}} \] \[ = \frac{1}{\sqrt{2.5 \times 10^{-9}}} \]
Step 4: Simplify the square root
\[ \sqrt{2.5 \times 10^{-9}} = \sqrt{2.5} \times \sqrt{10^{-9}} = 1.58 \times 10^{-4.5} \]
Step 5: Calculate the final value of \( \omega_0 \)
\[ \omega_0 = \frac{1}{1.58 \times 10^{-4.5}} = \frac{1}{1.58 \times 3.16 \times 10^{-5}} \approx \frac{1}{5 \times 10^{-5}} = 2 \times 10^4\,\text{rad/s} \]
Final Answer: The angular frequency at resonance is \( \boxed{2 \times 10^4\,\text{rad/s}} \).
In a resonance tube closed at one end. Resonance is obtained at lengths \( l_1 = 120 \, \text{cm} \) and \( l_2 = 200 \, \text{cm} \). If \( v_s = 340 \, \text{m/s} \), find the frequency of sound.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).