We are given the function: \[ f(x) = \frac{\tan(\tan x) - \sin(\sin x)}{\tan x - \sin x} \]
and we are told that it is continuous at $x = 0$. For continuity, $f(0) = \lim_{x \to 0} f(x)$.
We use Taylor series expansions around $x=0$:
\[\begin{align} \tan x &= x + \frac{x^3}{3} + \frac{2x^5}{15} + O(x^7) \\\sin x &= x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7) \end{align}\]
Step 1: Expansion of $\tan(\tan x)$
Let $u = \tan x = x + \frac{x^3}{3} + O(x^5)$.
\[\begin{align} \tan(\tan x) &= \tan(u) = u + \frac{u^3}{3} + O(u^5) \\&= \left(x + \frac{x^3}{3}\right) + \frac{1}{3}\left(x + \frac{x^3}{3}\right)^3 + O(x^5) \\&= \left(x + \frac{x^3}{3}\right) + \frac{1}{3}(x^3 + 3x^2(\frac{x^3}{3}) + ...) + O(x^5) \\&= \left(x + \frac{x^3}{3}\right) + \frac{1}{3}(x^3 + O(x^5)) + O(x^5) \\&= x + \frac{x^3}{3} + \frac{x^3}{3} + O(x^5) = x + \frac{2x^3}{3} + O(x^5) \end{align}\]
Step 2: Expansion of $\sin(\sin x)$
Let $v = \sin x = x - \frac{x^3}{6} + O(x^5)$.
\[\begin{align} \sin(\sin x) &= \sin(v) = v - \frac{v^3}{6} + O(v^5) \\&= \left(x - \frac{x^3}{6}\right) - \frac{1}{6}\left(x - \frac{x^3}{6}\right)^3 + O(x^5) \\&= \left(x - \frac{x^3}{6}\right) - \frac{1}{6}(x^3 - 3x^2(\frac{x^3}{6}) + ...) + O(x^5) \\&= \left(x - \frac{x^3}{6}\right) - \frac{1}{6}(x^3 + O(x^5)) + O(x^5) \\&= x - \frac{x^3}{6} - \frac{x^3}{6} + O(x^5) = x - \frac{x^3}{3} + O(x^5) \end{align}\]
Step 3: Expansion of the denominator
\[\begin{align} \tan x - \sin x &= \left(x + \frac{x^3}{3} + O(x^5)\right) - \left(x - \frac{x^3}{6} + O(x^5)\right) \\&= x + \frac{x^3}{3} - x + \frac{x^3}{6} + O(x^5) \\&= \left(\frac{1}{3} + \frac{1}{6}\right)x^3 + O(x^5) = \frac{2+1}{6}x^3 + O(x^5) = \frac{x^3}{2} + O(x^5) \end{align}\]
Step 4: Finding the limit of $f(x)$ as $x \to 0$
\[\begin{align} \lim_{x \to 0} f(x) &= \lim_{x \to 0} \frac{(x + \frac{2x^3}{3} + O(x^5)) - (x - \frac{x^3}{3} + O(x^5))}{\frac{x^3}{2} + O(x^5)} \\&= \lim_{x \to 0} \frac{x + \frac{2x^3}{3} - x + \frac{x^3}{3} + O(x^5)}{\frac{x^3}{2} + O(x^5)} \\&= \lim_{x \to 0} \frac{x^3 + O(x^5)}{\frac{x^3}{2} + O(x^5)} \\&= \lim_{x \to 0} \frac{x^3(1 + O(x^2))}{x^3(\frac{1}{2} + O(x^2))} \\&= \frac{1}{\frac{1}{2}} = 2 \end{align}\]
Since $f(x)$ is continuous at $x=0$, $f(0) = \lim_{x \to 0} f(x) = 2$.
Final Answer:
The final answer is $2$
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).