Given: \[ r = R + \frac{R}{3} = \frac{4R}{3} \]
For circular motion, gravitational force provides the centripetal force: \[ \frac{GMm}{r^2} = \frac{mv^2}{r} \] Simplifying, we get: \[ v = \sqrt{\frac{GM}{r}} \]
The angular momentum \( L \) of the satellite is: \[ L = mvr \]
Satellite mass: \[ m = \frac{M}{2} \] Orbital radius: \[ r = \frac{4R}{3} \] Orbital speed: \[ v = \sqrt{\frac{GM}{\frac{4R}{3}}} = \sqrt{\frac{3GM}{4R}} \]
\[ L = \frac{M}{2} \cdot \frac{4R}{3} \cdot \sqrt{\frac{3GM}{4R}} \] Simplify: \[ L = \frac{2MR}{3} \sqrt{\frac{3GM}{4R}} \]
\[ \sqrt{\frac{3GM}{4R}} = \sqrt{\frac{3}{4}} \sqrt{\frac{GM}{R}} = \frac{\sqrt{3}}{2} \sqrt{\frac{GM}{R}} \] Therefore, \[ L = \frac{2MR}{3} \times \frac{\sqrt{3}}{2} \sqrt{\frac{GM}{R}} \] \[ L = \frac{M\sqrt{3}}{3} \sqrt{GMR} \] \[ L = \frac{M}{\sqrt{3}} \sqrt{GMR} \]
It is given that: \[ L = M \sqrt{\frac{GMR}{x}} \]
\[ \frac{M}{\sqrt{3}} \sqrt{GMR} = M \sqrt{\frac{GMR}{x}} \] Cancel \( M \) and \( \sqrt{GMR} \) (since both are non-zero): \[ \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{x}} \]
\[ \frac{1}{3} = \frac{1}{x} \Rightarrow x = 3 \]
\[ \boxed{x = 3} \]
The angular momentum \( L \) of a satellite in a circular orbit is given by:
\[ L = mvr, \]
Where:
The orbital velocity is given by:
\[ v = \sqrt{\frac{GM}{r}}, \]
Where \( G \) is the gravitational constant, and \( M \) is the Earth's mass.
The satellite is at a height of \( \frac{R}{3} \) from the Earth's surface. So the total distance from the Earth's center is:
\[ r = R + \frac{R}{3} = \frac{4R}{3}. \]
Now substitute into the formula for \( L \):
\[ L = m \cdot v \cdot r = m \cdot \sqrt{\frac{GM}{r}} \cdot r. \]
Substitute \( r = \frac{4R}{3} \):
\[ L = m \cdot \sqrt{\frac{GM}{\frac{4R}{3}}} \cdot \frac{4R}{3} = m \cdot \sqrt{\frac{3GM}{4R}} \cdot \frac{4R}{3}. \]
The satellite has mass \( m = \frac{M}{2} \), so we get:
\[ L = \frac{M}{2} \cdot \sqrt{\frac{3GM}{4R}} \cdot \frac{4R}{3}. \]
Simplify the constants:
\[ L = \frac{M}{2} \cdot \frac{4R}{3} \cdot \sqrt{\frac{3GM}{4R}}. \]
Combine terms under the square root and outside:
\[ L = M \cdot \sqrt{\frac{GM R}{3}}. \]
The angular momentum is:
\[ L = M \cdot \sqrt{\frac{GMR}{3}}, \]
Therefore, the value of \( x = 3 \).

Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: