The angular momentum \( L \) of a satellite in a circular orbit is given by:
\[ L = mvr, \]
Where:
The orbital velocity is given by:
\[ v = \sqrt{\frac{GM}{r}}, \]
Where \( G \) is the gravitational constant, and \( M \) is the Earth's mass.
The satellite is at a height of \( \frac{R}{3} \) from the Earth's surface. So the total distance from the Earth's center is:
\[ r = R + \frac{R}{3} = \frac{4R}{3}. \]
Now substitute into the formula for \( L \):
\[ L = m \cdot v \cdot r = m \cdot \sqrt{\frac{GM}{r}} \cdot r. \]
Substitute \( r = \frac{4R}{3} \):
\[ L = m \cdot \sqrt{\frac{GM}{\frac{4R}{3}}} \cdot \frac{4R}{3} = m \cdot \sqrt{\frac{3GM}{4R}} \cdot \frac{4R}{3}. \]
The satellite has mass \( m = \frac{M}{2} \), so we get:
\[ L = \frac{M}{2} \cdot \sqrt{\frac{3GM}{4R}} \cdot \frac{4R}{3}. \]
Simplify the constants:
\[ L = \frac{M}{2} \cdot \frac{4R}{3} \cdot \sqrt{\frac{3GM}{4R}}. \]
Combine terms under the square root and outside:
\[ L = M \cdot \sqrt{\frac{GM R}{3}}. \]
The angular momentum is:
\[ L = M \cdot \sqrt{\frac{GMR}{3}}, \]
Therefore, the value of \( x = 3 \).