Given: \[ r = R + \frac{R}{3} = \frac{4R}{3} \]
For circular motion, gravitational force provides the centripetal force: \[ \frac{GMm}{r^2} = \frac{mv^2}{r} \] Simplifying, we get: \[ v = \sqrt{\frac{GM}{r}} \]
The angular momentum \( L \) of the satellite is: \[ L = mvr \]
Satellite mass: \[ m = \frac{M}{2} \] Orbital radius: \[ r = \frac{4R}{3} \] Orbital speed: \[ v = \sqrt{\frac{GM}{\frac{4R}{3}}} = \sqrt{\frac{3GM}{4R}} \]
\[ L = \frac{M}{2} \cdot \frac{4R}{3} \cdot \sqrt{\frac{3GM}{4R}} \] Simplify: \[ L = \frac{2MR}{3} \sqrt{\frac{3GM}{4R}} \]
\[ \sqrt{\frac{3GM}{4R}} = \sqrt{\frac{3}{4}} \sqrt{\frac{GM}{R}} = \frac{\sqrt{3}}{2} \sqrt{\frac{GM}{R}} \] Therefore, \[ L = \frac{2MR}{3} \times \frac{\sqrt{3}}{2} \sqrt{\frac{GM}{R}} \] \[ L = \frac{M\sqrt{3}}{3} \sqrt{GMR} \] \[ L = \frac{M}{\sqrt{3}} \sqrt{GMR} \]
It is given that: \[ L = M \sqrt{\frac{GMR}{x}} \]
\[ \frac{M}{\sqrt{3}} \sqrt{GMR} = M \sqrt{\frac{GMR}{x}} \] Cancel \( M \) and \( \sqrt{GMR} \) (since both are non-zero): \[ \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{x}} \]
\[ \frac{1}{3} = \frac{1}{x} \Rightarrow x = 3 \]
\[ \boxed{x = 3} \]
The angular momentum \( L \) of a satellite in a circular orbit is given by:
\[ L = mvr, \]
Where:
The orbital velocity is given by:
\[ v = \sqrt{\frac{GM}{r}}, \]
Where \( G \) is the gravitational constant, and \( M \) is the Earth's mass.
The satellite is at a height of \( \frac{R}{3} \) from the Earth's surface. So the total distance from the Earth's center is:
\[ r = R + \frac{R}{3} = \frac{4R}{3}. \]
Now substitute into the formula for \( L \):
\[ L = m \cdot v \cdot r = m \cdot \sqrt{\frac{GM}{r}} \cdot r. \]
Substitute \( r = \frac{4R}{3} \):
\[ L = m \cdot \sqrt{\frac{GM}{\frac{4R}{3}}} \cdot \frac{4R}{3} = m \cdot \sqrt{\frac{3GM}{4R}} \cdot \frac{4R}{3}. \]
The satellite has mass \( m = \frac{M}{2} \), so we get:
\[ L = \frac{M}{2} \cdot \sqrt{\frac{3GM}{4R}} \cdot \frac{4R}{3}. \]
Simplify the constants:
\[ L = \frac{M}{2} \cdot \frac{4R}{3} \cdot \sqrt{\frac{3GM}{4R}}. \]
Combine terms under the square root and outside:
\[ L = M \cdot \sqrt{\frac{GM R}{3}}. \]
The angular momentum is:
\[ L = M \cdot \sqrt{\frac{GMR}{3}}, \]
Therefore, the value of \( x = 3 \).

For a given reaction \( R \rightarrow P \), \( t_{1/2} \) is related to \([A_0]\) as given in the table. Given: \( \log 2 = 0.30 \). Which of the following is true?
| \([A]\) (mol/L) | \(t_{1/2}\) (min) |
|---|---|
| 0.100 | 200 |
| 0.025 | 100 |
A. The order of the reaction is \( \frac{1}{2} \).
B. If \( [A_0] \) is 1 M, then \( t_{1/2} \) is \( 200/\sqrt{10} \) min.
C. The order of the reaction changes to 1 if the concentration of reactant changes from 0.100 M to 0.500 M.
D. \( t_{1/2} \) is 800 min for \( [A_0] = 1.6 \) M.