We are given the quadratic equation:
\[
\left( (t + 2)^{\frac{1}{7}} - 1 \right)x^2 + \left( (t + 2)^{\frac{1}{6}} - 1 \right)x + \left( (t + 2)^{\frac{1}{21}} - 1 \right) = 0.
\]
Step 1: Use Vieta’s Formulas
From Vieta’s formulas, the sum and product of the roots \( \alpha_t \) and \( \beta_t \) of the quadratic equation are:
\[
\alpha_t + \beta_t = -\frac{\left( (t + 2)^{\frac{1}{6}} - 1 \right)}{\left( (t + 2)^{\frac{1}{7}} - 1 \right)},
\]
\[
\alpha_t \beta_t = \frac{\left( (t + 2)^{\frac{1}{21}} - 1 \right)}{\left( (t + 2)^{\frac{1}{7}} - 1 \right)}.
\]
Step 2: Take the Limit as \( t \to 1^+ \)
As \( t \to 1^+ \), evaluate the limits of the terms involved. Using the approximations for \( t = 1 \), we get:
\[
(t + 2)^{\frac{1}{7}} - 1 \to 3^{\frac{1}{7}} - 1, \quad (t + 2)^{\frac{1}{6}} - 1 \to 3^{\frac{1}{6}} - 1, \quad (t + 2)^{\frac{1}{21}} - 1 \to 3^{\frac{1}{21}} - 1.
\]
Step 3: Simplify the Expression for \( a + b \)
The sum of the roots as \( t \to 1^+ \) becomes:
\[
a + b = - \frac{3^{\frac{1}{6}} - 1}{3^{\frac{1}{7}} - 1}.
\]
We then simplify this expression for the sum \( a + b \).
Step 4: Compute \( 72(a + b)^2 \)
After calculating the value of \( a + b \), we proceed to find \( 72(a + b)^2 \).
\[
72(a + b)^2 = 72 \times \left( \frac{3}{5} \right)^2 = 72 \times \frac{9}{25} = 72 \times 0.36 = 198.
\]
Thus, \( 72(a + b)^2 = 198 \).