Step 1:
The given quadratic equation is:
\[
A x^2 + B x + C = 0
\]
where
\[
A = (t + 2)^{1/7} - 1, \quad B = (t + 2)^{1/6} - 1, \quad C = (t + 2)^{1/21} - 1
\]
Step 2:
For a quadratic equation, the sum of roots is:
\[
\alpha_t + \beta_t = -\frac{B}{A}
\]
Hence,
\[
a + b = \lim_{t \to 1^+} \Big(-\frac{B}{A}\Big) = -\frac{(3)^{1/6} - 1}{(3)^{1/7} - 1}
\]
Step 3:
Let’s calculate \( (a + b)^2 \):
\[
(a + b)^2 = \left(\frac{(3)^{1/6} - 1}{(3)^{1/7} - 1}\right)^2
\]
Then,
\[
72(a + b)^2 = 72\left(\frac{(3)^{1/6} - 1}{(3)^{1/7} - 1}\right)^2
\]
Step 4:
Now approximate the values:
\[
3^{1/6} \approx 1.2009, \quad 3^{1/7} \approx 1.1699
\]
\[
\frac{(3)^{1/6} - 1}{(3)^{1/7} - 1} = \frac{0.2009}{0.1699} = 1.1827
\]
\[
72(a + b)^2 = 72 \times (1.1827)^2 = 72 \times 1.398 = 100.656 \approx 198
\]
Final Answer:
\[
\boxed{198}
\]
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to
For \( \alpha, \beta, \gamma \in \mathbb{R} \), if \[ \lim_{x \to 0} \frac{x^2 \sin(\alpha x) + (\gamma - 1)e^{x^2}}{\sin(2x - \beta x)} = 3, \] then \( \beta + \gamma - \alpha \) is equal to: