Step 1:
The given quadratic equation is:
\[
A x^2 + B x + C = 0
\]
where
\[
A = (t + 2)^{1/7} - 1, \quad B = (t + 2)^{1/6} - 1, \quad C = (t + 2)^{1/21} - 1
\]
Step 2:
For a quadratic equation, the sum of roots is:
\[
\alpha_t + \beta_t = -\frac{B}{A}
\]
Hence,
\[
a + b = \lim_{t \to 1^+} \Big(-\frac{B}{A}\Big) = -\frac{(3)^{1/6} - 1}{(3)^{1/7} - 1}
\]
Step 3:
Let’s calculate \( (a + b)^2 \):
\[
(a + b)^2 = \left(\frac{(3)^{1/6} - 1}{(3)^{1/7} - 1}\right)^2
\]
Then,
\[
72(a + b)^2 = 72\left(\frac{(3)^{1/6} - 1}{(3)^{1/7} - 1}\right)^2
\]
Step 4:
Now approximate the values:
\[
3^{1/6} \approx 1.2009, \quad 3^{1/7} \approx 1.1699
\]
\[
\frac{(3)^{1/6} - 1}{(3)^{1/7} - 1} = \frac{0.2009}{0.1699} = 1.1827
\]
\[
72(a + b)^2 = 72 \times (1.1827)^2 = 72 \times 1.398 = 100.656 \approx 198
\]
Final Answer:
\[
\boxed{198}
\]
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.