The question provides one assertion and one reason and asks us to evaluate their correctness and relationship. Let's analyze each statement:
Now, let's analyze the relationships to select the correct option:
Therefore, the most appropriate answer is: (A) is correct but (R) is not correct.
Light from a point source in air falls on a spherical glass surface (refractive index, \( \mu = 1.5 \) and radius of curvature \( R = 50 \) cm). The image is formed at a distance of 200 cm from the glass surface inside the glass. The magnitude of distance of the light source from the glass surface is 1cm.
If an optical medium possesses a relative permeability of $ \frac{10}{\pi} $ and relative permittivity of $ \frac{1}{0.0885} $, then the velocity of light is greater in vacuum than in that medium by ________ times. $ (\mu_0 = 4\pi \times 10^{-7} \, \text{H/m}, \quad \epsilon_0 = 8.85 \times 10^{-12} \, \text{F/m}, \quad c = 3 \times 10^8 \, \text{m/s}) $

\[ f(x) = \left\{ \begin{array}{ll} 1 - 2x & \text{if } x < -1 \\ \frac{1}{3}(7 + 2|x|) & \text{if } -1 \leq x \leq 2 \\ \frac{11}{18} (x-4)(x-5) & \text{if } x > 2 \end{array} \right. \]