We have triangle \( \triangle ABC \) with vertices \( A(4,-2), B(1,1), C(9,-3) \). A parallelogram \( AFDE \) is formed with \( D \in BC,\; E \in CA,\; F \in AB \) and one vertex at \( A \). We need to find the maximum possible area of such a parallelogram.
Parametrize points on sides through vectors from \( A \): let \( \vec{u}=\overrightarrow{AB} \) and \( \vec{v}=\overrightarrow{AC} \). If \( F=A+\alpha \vec{u} \) and \( E=A+\beta \vec{v} \) with \( \alpha,\beta \in [0,1] \), then the fourth vertex of the parallelogram is \( D = F + E - A = A + \alpha\vec{u} + \beta\vec{v} \). For \( D \) to lie on \( BC \), we must have coefficients that are convex on \( \vec{u},\vec{v} \), i.e., \( \alpha,\beta \ge 0 \) and \( \alpha + \beta = 1 \). The area of the parallelogram spanned by sides \( \overrightarrow{AF}=\alpha\vec{u} \) and \( \overrightarrow{AE}=\beta\vec{v} \) is
\[ [\text{Parallelogram}] = \left\lvert \overrightarrow{AF} \times \overrightarrow{AE} \right\rvert = \alpha\beta\, \left\lvert \vec{u} \times \vec{v} \right\rvert. \]
Thus the problem reduces to maximizing \( \alpha\beta \) subject to \( \alpha,\beta \ge 0 \) and \( \alpha+\beta=1 \), and computing \( \lvert \vec{u} \times \vec{v} \rvert \) from the given coordinates.
Step 1: Compute the side vectors from \( A \):
\[ \vec{u}=\overrightarrow{AB}=B-A=(1-4,\; 1-(-2))=(-3,\,3),\quad \vec{v}=\overrightarrow{AC}=C-A=(9-4,\; -3-(-2))=(5,\,-1). \]
Step 2: Compute the magnitude of the 2D cross product (determinant) \( \lvert \vec{u}\times\vec{v}\rvert \):
\[ \lvert \vec{u}\times\vec{v}\rvert=\left| \det\begin{pmatrix} -3 & 5\\ 3 & -1\end{pmatrix}\right| =\left|(-3)(-1)-3\cdot 5\right|=\left|3-15\right|=12. \]
The area of \( \triangle ABC \) is \( \dfrac{1}{2}\lvert \vec{u}\times\vec{v}\rvert = \dfrac{1}{2}\cdot 12 = 6 \).
Step 3: Impose the parallelogram-on-sides condition. With \( F=A+\alpha\vec{u} \) and \( E=A+\beta\vec{v} \), the fourth vertex is \( D=A+\alpha\vec{u}+\beta\vec{v} \). For \( D \in BC \), points on \( BC \) can be written as \( A + s\vec{u} + t\vec{v} \) with \( s,t \ge 0 \) and \( s+t=1 \). Hence the necessary and sufficient condition is
\[ \alpha \ge 0,\quad \beta \ge 0,\quad \alpha+\beta=1. \]
Step 4: Express the area of \( AFDE \) in terms of \( \alpha,\beta \):
\[ [\text{Parallelogram }AFDE] = \left\lvert \overrightarrow{AF}\times\overrightarrow{AE} \right\rvert = \left\lvert (\alpha\vec{u})\times(\beta\vec{v}) \right\rvert = \alpha\beta\, \lvert \vec{u}\times\vec{v} \rvert = \alpha\beta \cdot 12. \]
Step 5: Maximize \( \alpha\beta \) under \( \alpha,\beta \ge 0 \) and \( \alpha+\beta=1 \). Using AM-GM or a quadratic, the maximum occurs at \( \alpha=\beta=\dfrac{1}{2} \), giving
\[ \max \alpha\beta = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4}. \]
Thus the maximum area is
\[ [\text{AFDE}]_{\max} = 12 \cdot \frac{1}{4} = 3 \]
Equivalently, it is half the area of \( \triangle ABC \) (since \( [\triangle ABC]=6 \)). Hence the maximum area is 3 square units.
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?


Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.