The given summation is:
\( \sum_{k=0}^6 \binom{51-k}{3} \)
Step 1: Rewrite the summation
This summation can be expanded as:
\( \sum_{k=0}^6 \binom{51-k}{3} = \binom{51}{3} + \binom{50}{3} + \dots + \binom{45}{3}. \)
This is a finite summation of combinations.
Step 2: Use the telescoping property of combinations
We utilize the following identity for summation of combinations:
\( \sum_{r=a}^b \binom{r}{p} = \binom{b+1}{p+1} - \binom{a}{p+1} \)
Here, let \( a=45, b=51\), and \(p=3\). Substituting these values:
\( \sum_{k=0}^6 \binom{51-k}{3} = \binom{52}{4} - \binom{45}{4}. \)
Step 3: Verify the answer
From the above calculation, we see that:
\( \sum_{k=0}^6 \binom{51-k}{3} = \binom{52}{4} - \binom{45}{4}. \)
This matches option (3).
Final Answer:
\( \boxed{\binom{52}{4} - \binom{45}{4}} \)
If \[ \int (\sin x)^{-\frac{11}{2}} (\cos x)^{-\frac{5}{2}} \, dx \] is equal to \[ -\frac{p_1}{q_1}(\cot x)^{\frac{9}{2}} -\frac{p_2}{q_2}(\cot x)^{\frac{5}{2}} -\frac{p_3}{q_3}(\cot x)^{\frac{1}{2}} +\frac{p_4}{q_4}(\cot x)^{-\frac{3}{2}} + C, \] where \( p_i, q_i \) are positive integers with \( \gcd(p_i,q_i)=1 \) for \( i=1,2,3,4 \), then the value of \[ \frac{15\,p_1 p_2 p_3 p_4}{q_1 q_2 q_3 q_4} \] is ___________.
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
