The given summation is:
\( \sum_{k=0}^6 \binom{51-k}{3} \)
Step 1: Rewrite the summation
This summation can be expanded as:
\( \sum_{k=0}^6 \binom{51-k}{3} = \binom{51}{3} + \binom{50}{3} + \dots + \binom{45}{3}. \)
This is a finite summation of combinations.
Step 2: Use the telescoping property of combinations
We utilize the following identity for summation of combinations:
\( \sum_{r=a}^b \binom{r}{p} = \binom{b+1}{p+1} - \binom{a}{p+1} \)
Here, let \( a=45, b=51\), and \(p=3\). Substituting these values:
\( \sum_{k=0}^6 \binom{51-k}{3} = \binom{52}{4} - \binom{45}{4}. \)
Step 3: Verify the answer
From the above calculation, we see that:
\( \sum_{k=0}^6 \binom{51-k}{3} = \binom{52}{4} - \binom{45}{4}. \)
This matches option (3).
Final Answer:
\( \boxed{\binom{52}{4} - \binom{45}{4}} \)
If \[ \int (\sin x)^{-\frac{11}{2}} (\cos x)^{-\frac{5}{2}} \, dx \] is equal to \[ -\frac{p_1}{q_1}(\cot x)^{\frac{9}{2}} -\frac{p_2}{q_2}(\cot x)^{\frac{5}{2}} -\frac{p_3}{q_3}(\cot x)^{\frac{1}{2}} +\frac{p_4}{q_4}(\cot x)^{-\frac{3}{2}} + C, \] where \( p_i, q_i \) are positive integers with \( \gcd(p_i,q_i)=1 \) for \( i=1,2,3,4 \), then the value of \[ \frac{15\,p_1 p_2 p_3 p_4}{q_1 q_2 q_3 q_4} \] is ___________.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
