We are given:
\[
\int \frac{2x + 3}{(xy)(x^2 + 1)} \, dx = \frac{1}{y} \int \frac{2x + 3}{x(x^2 + 1)} \, dx
\]
Now split the integral:
\[
= \frac{1}{y} \left[ \int \frac{2x}{x(x^2 + 1)} \, dx + \int \frac{3}{x(x^2 + 1)} \, dx \right]
\]
The first term:
\[
\int \frac{2x}{x(x^2 + 1)} dx = \int \frac{2}{x^2 + 1} dx = 2 \tan^{-1}(x)
\]
The second term:
\[
\int \frac{3}{x(x^2 + 1)} dx = 3 \int \frac{1}{x(x^2 + 1)} dx
\]
This integral can be solved using partial fractions. The result is:
\[
3 \int \frac{1}{x(x^2 + 1)} dx = 3 \ln|x| - 3 \tan^{-1}(x)
\]
So, the combined result is:
\[
\frac{1}{y} \left[ 2 \tan^{-1}(x) + 3 \ln|x| - 3 \tan^{-1}(x) \right] + C = \frac{2}{y} \ln|x| + \frac{3}{y} \tan^{-1}(x) + C
\]