Given :
\[
\frac{2x + 3}{(x - 1)(x^2 + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1}
\]
Multiplying both sides by \( (x - 1)(x^2 + 1) \), we get:
\[
2x + 3 = A(x^2 + 1) + (Bx + C)(x - 1)
\]
Expanding the RHS:
\[
A(x^2 + 1) + Bx(x - 1) + C(x - 1) = Ax^2 + A + Bx^2 - Bx + Cx - C
\]
Combining like terms:
\[
(A + B)x^2 + (-B + C)x + (A - C)
\]
Now, equate coefficients with LHS \( 2x + 3 \):
\[
A + B = 0 \quad \text{(1)}
-B + C = 2 \quad \text{(2)}
A - C = 3 \quad \text{(3)}
\]
Solving equations:
From (1): \( B = -A \)
Substitute into (2): \( -(-A) + C = 2 \Rightarrow A + C = 2 \quad \text{(4)} \)
From (3): \( A - C = 3 \)
Add (4) and (3):
\[
A + C + A - C = 2 + 3 \Rightarrow 2A = 5 \Rightarrow A = \frac{5}{2}
\]
So, \( B = -\frac{5}{2} \), and \( C = 2 - \frac{5}{2} = -\frac{1}{2} \)
Thus,
\[
\frac{2x + 3}{(x - 1)(x^2 + 1)} = \frac{5/2}{x - 1} - \frac{5x/2 + 1/2}{x^2 + 1}
\]
Integrating:
\[
\int \frac{5}{2(x - 1)} \, dx - \int \frac{5x/2 + 1/2}{x^2 + 1} \, dx
\]
Break into parts:
\[
= \frac{5}{2} \ln|x - 1| - \frac{5}{4} \ln(x^2 + 1) - \frac{1}{2} \tan^{-1}x + C
\]
Compare with:
\[
\log_x \{(x - 1)^{\frac{5}{2}}(x^2 + 1)^a\} - \frac{1}{2} \tan^{-1}x + C
\]
So,
\[
a = -\frac{5}{4}
\]