Question:

If ∫ (2x + 3)/((x - 1)(x^2 + 1)) dx = log_x {(x - 1)^(5/2)(x^2 + 1)^a} - (1/2) tan^(-1)x + C, then the value of a is:

Show Hint

Break rational expressions into partial fractions to simplify integration and match logarithmic terms to identify unknown constants.
Updated On: Apr 21, 2025
  • \( \frac{5}{4} \)
  • \( -\frac{5}{3} \)
  • \( -\frac{5}{6} \)
  • \( -\frac{5}{4} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation


Given :
\[ \frac{2x + 3}{(x - 1)(x^2 + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1} \] Multiplying both sides by \( (x - 1)(x^2 + 1) \), we get: \[ 2x + 3 = A(x^2 + 1) + (Bx + C)(x - 1) \] Expanding the RHS: \[ A(x^2 + 1) + Bx(x - 1) + C(x - 1) = Ax^2 + A + Bx^2 - Bx + Cx - C \] Combining like terms: \[ (A + B)x^2 + (-B + C)x + (A - C) \] Now, equate coefficients with LHS \( 2x + 3 \): \[ A + B = 0 \quad \text{(1)}
-B + C = 2 \quad \text{(2)}
A - C = 3 \quad \text{(3)} \] Solving equations: From (1): \( B = -A \)
Substitute into (2): \( -(-A) + C = 2 \Rightarrow A + C = 2 \quad \text{(4)} \) From (3): \( A - C = 3 \) Add (4) and (3):
\[ A + C + A - C = 2 + 3 \Rightarrow 2A = 5 \Rightarrow A = \frac{5}{2} \] So, \( B = -\frac{5}{2} \), and \( C = 2 - \frac{5}{2} = -\frac{1}{2} \) Thus, \[ \frac{2x + 3}{(x - 1)(x^2 + 1)} = \frac{5/2}{x - 1} - \frac{5x/2 + 1/2}{x^2 + 1} \] Integrating: \[ \int \frac{5}{2(x - 1)} \, dx - \int \frac{5x/2 + 1/2}{x^2 + 1} \, dx \] Break into parts: \[ = \frac{5}{2} \ln|x - 1| - \frac{5}{4} \ln(x^2 + 1) - \frac{1}{2} \tan^{-1}x + C \] Compare with: \[ \log_x \{(x - 1)^{\frac{5}{2}}(x^2 + 1)^a\} - \frac{1}{2} \tan^{-1}x + C \] So, \[ a = -\frac{5}{4} \]
Was this answer helpful?
0
0