Step 1: Solve \( \tan^2(\sec^{-1}4) \)
Recall that \( \sec^{-1}x \) gives an angle whose secant is \( x \). Thus:
\[
\sec(\theta) = 4 \quad \text{where} \quad \theta = \sec^{-1}4
\]
Since \( \sec(\theta) = \frac{1}{\cos(\theta)} \), we have:
\[
\cos(\theta) = \frac{1}{4}
\]
Now, use the Pythagorean identity to find \( \sin(\theta) \):
\[
\sin^2(\theta) + \cos^2(\theta) = 1
\]
\[
\sin^2(\theta) = 1 - \left( \frac{1}{4} \right)^2 = 1 - \frac{1}{16} = \frac{15}{16}
\]
\[
\sin(\theta) = \frac{\sqrt{15}}{4}
\]
Next, calculate \( \tan^2(\theta) \):
\[
\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{\sqrt{15}}{4}}{\frac{1}{4}} = \sqrt{15}
\]
Thus:
\[
\tan^2(\theta) = (\sqrt{15})^2 = 15
\]
Step 2: Solve \( \cot(\csc^{-1}3) \)
Recall that \( \csc^{-1}x \) gives an angle whose cosecant is \( x \). Thus:
\[
\csc(\theta) = 3 \quad \text{where} \quad \theta = \csc^{-1}3
\]
Since \( \csc(\theta) = \frac{1}{\sin(\theta)} \), we have:
\[
\sin(\theta) = \frac{1}{3}
\]
Now, use the Pythagorean identity to find \( \cos(\theta) \):
\[
\sin^2(\theta) + \cos^2(\theta) = 1
\]
\[
\cos^2(\theta) = 1 - \left( \frac{1}{3} \right)^2 = 1 - \frac{1}{9} = \frac{8}{9}
\]
\[
\cos(\theta) = \frac{\sqrt{8}}{3} = \frac{2\sqrt{2}}{3}
\]
Next, calculate \( \cot(\theta) \):
\[
\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} = \frac{\frac{2\sqrt{2}}{3}}{\frac{1}{3}} = 2\sqrt{2}
\]
Step 3: Add the results
Now, add the results from Step 1 and Step 2:
\[
\tan^2(\sec^{-1}4) + \cot(\csc^{-1}3) = 15 + 2\sqrt{2}
\]
Answer: The value of the expression is \( 15 + 2\sqrt{2} \). Therefore, the correct answer is option (2).