Step 1: Define substitution
Let \( x = \theta - \frac{\pi}{2} \), then as \( \theta \to \frac{\pi}{2} \), we use the approximation:
\[
\tan\theta \approx \frac{1}{x} \quad \text{as } x \to 0.
\]
Step 2: Substitute and Simplify
Substituting in the given expression:
\[
8\tan^4\theta + 4\tan^2\theta + 5 = 8\left(\frac{1}{x}\right)^4 + 4\left(\frac{1}{x}\right)^2 + 5
\]
\[
= \frac{8}{x^4} + \frac{4}{x^2} + 5.
\]
For the denominator:
\[
(3 - 2\tan\theta)^4 = (3 - 2\cdot\frac{1}{x})^4 = \left(\frac{3x - 2}{x}\right)^4.
\]
Step 3: Compute the limit
Taking the limit, the dominant terms give:
\[
\lim_{x \to 0} \frac{\frac{8}{x^4} + \frac{4}{x^2} + 5}{\left(\frac{3x - 2}{x}\right)^4} = \frac{8}{16} = \frac{1}{2}.
\]
Thus, the correct answer is \( \boxed{\frac{1}{2}} \).