The problem involves the ionization of a coordination complex and the depression in freezing point to deduce the correct complex structure.
Given: \[ \Delta T_f = 0.558°C \quad \text{and} \quad k_f = 1.86 \, \text{K} \, \text{kg/mol} \] We know that: \[ \Delta T_f = i \times k_f \times m \] where \(i\) is the van't Hoff factor (number of ions produced per formula unit), \(m\) is the molality, and \(k_f\) is the cryoscopic constant.
Given that the molality of the solution is 0.1 m, we have: \[ \Delta T_f = i \times 1.86 \times 0.1 \] Substituting the given value of \(\Delta T_f\): \[ 0.558 = i \times 1.86 \times 0.1 \] \[ i = \frac{0.558}{1.86 \times 0.1} = 3 \] This implies that the complex ion must dissociate into 3 ions in solution. The complex that corresponds to \(i = 3\) is [Cr(NH\(_3\))\(_5\)]Cl\(_2\), as it would dissociate into 1 Cr\(^3+\) ion and 2 Cl\(^-\) ions.
Thus, the correct complex is [Cr(NH\(_3\))\(_5\)]Cl\(_2\).
For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?
