We are given the function \( f(x) \) defined piecewise. We need to find the value of the limit:
\[
\lim_{x \to 0} \frac{\sin(ax) + x \tan(bx)}{x^2}
\]
Step 1: Apply standard limits for trigonometric functions
Using the standard limits:
\[
\lim_{x \to 0} \frac{\sin(kx)}{x} = k \quad \text{and} \quad \lim_{x \to 0} \frac{\tan(kx)}{x} = k
\]
we can rewrite the expression for small \( x \) as:
\[
\frac{\sin(ax)}{x} + \frac{x \tan(bx)}{x^2}
\]
Step 2: Simplify the limit
Now, we simplify each term:
\[
\frac{\sin(ax)}{x} = a \quad \text{and} \quad \frac{x \tan(bx)}{x^2} = b
\]
Thus, the limit becomes:
\[
a + b
\]
Given that \( a = 2 \) and \( b = 0 \), the value of the limit is:
\[
2 + 0 = 2
\]
Thus, the correct answer is option (3), \( 2 \).