Right-hand limit (RHL): Approaching \( x \to 0^+ \), we substitute in the first case: \[ \lim\limits_{h \to 0^+} \frac{\tan^2 h}{h^2} = \lim\limits_{h \to 0^+} \frac{\tan^2 h}{h^2} = 1 \]
- Left-hand limit (LHL): Approaching \( x \to 0^- \), we substitute in the third case: \[ \lim\limits_{h \to 0^-} \sqrt{(-h) \cot(-h)} \] Using \( \cot(-h) = -\cot h \), we get: \[ \lim\limits_{h \to 0^-} \sqrt{(1-h) \cot(1-h)} \] which is not equal to \( \lim\limits_{x \to 0^+} f(x) \), thus: \[ \lim\limits_{x \to 0} f(x) { does not exist}. \]
Evaluate the following limit: $ \lim_{n \to \infty} \prod_{r=3}^n \frac{r^3 - 8}{r^3 + 8} $.
In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be: