The change in velocity (\( \Delta V \)) is given by:
\[ \Delta V = \frac{GM}{R} (\sqrt{2} - 1), \]
where:
The term \( \frac{GM}{R} \) can be rewritten using the acceleration due to gravity at the surface of the central body (\( g \)):
\[ g = \frac{GM}{R^2}. \]
Substitute \( gR \) for \( \frac{GM}{R} \):
\[ \Delta V = gR (\sqrt{2} - 1). \]
We are given \( gR = 8000 \, \text{m/s} \) or \( 8 \, \text{km/s} \). Substitute this into the equation:
\[ \Delta V = 8000 (\sqrt{2} - 1) \, \text{m/s}. \]
Convert to km/s:
\[ \Delta V = 8 (\sqrt{2} - 1) \, \text{km/s}. \]
\( \Delta V = 8 (\sqrt{2} - 1) \, \text{km/s} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: