The change in velocity (\( \Delta V \)) is given by:
\[ \Delta V = \frac{GM}{R} (\sqrt{2} - 1), \]
where:
The term \( \frac{GM}{R} \) can be rewritten using the acceleration due to gravity at the surface of the central body (\( g \)):
\[ g = \frac{GM}{R^2}. \]
Substitute \( gR \) for \( \frac{GM}{R} \):
\[ \Delta V = gR (\sqrt{2} - 1). \]
We are given \( gR = 8000 \, \text{m/s} \) or \( 8 \, \text{km/s} \). Substitute this into the equation:
\[ \Delta V = 8000 (\sqrt{2} - 1) \, \text{m/s}. \]
Convert to km/s:
\[ \Delta V = 8 (\sqrt{2} - 1) \, \text{km/s}. \]
\( \Delta V = 8 (\sqrt{2} - 1) \, \text{km/s} \).
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below:
