A slanted object AB is placed on one side of convex lens as shown in the diagram. The image is formed on the opposite side. Angle made by the image with principal axis is:
The location of the image of A can be found using the lens formula: \[ \frac{1}{v} - \frac{1}{u} = \frac{1}{f} \] where \( f = 20 \, \text{cm} \), \( u = -30 \, \text{cm} \), and \( v = 60 \, \text{cm} \). Using the magnification formula: \[ m = \frac{v}{u} = \frac{60}{-30} = -2 \] Since the object size is small with respect to the location, we can calculate the small change \( dv \) in the image: \[ dv = m^2 du = 4 \times 1 = 4 \, \text{cm} \] This gives us the size of the image at \( P \) as \( h_i = m h_o = 2 \times 2 = 4 \, \text{cm} \).
The angle made by the image with the principal axis is \( -45^\circ \), which corresponds to the correct answer.
Match List-I with List-II for the index of refraction for yellow light of sodium (589 nm)
LIST-I (Materials) | LIST-II (Refractive Indices) | ||
---|---|---|---|
A. | Ice | I. | 1.309 |
B. | Rock salt (NaCl) | II. | 1.460 |
C. | CCl₄ | III. | 1.544 |
D. | Diamond | IV. | 2.417 |
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Compton Effect | IV. | Scattering |
B. | Colors in thin film | II. | Interference |
C. | Double Refraction | III. | Polarization |
D. | Bragg's Equation | I. | Diffraction |
Choose the correct answer from the options given below:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).