The height from Earth's surface at which acceleration due to gravity becomes \(\frac{g}{4}\) is \(\_\_\)? (Where \(g\) is the acceleration due to gravity on the surface of the Earth and \(R\) is the radius of the Earth.)
A current-carrying rectangular loop PQRS is made of uniform wire. The length PR = QS = \( 5 \, \text{cm} \) and PQ = RS = \( 100 \, \text{cm} \). If the ammeter current reading changes from \( I \) to \( 2I \), the ratio of magnetic forces per unit length on the wire PQ due to wire RS in the two cases respectively \( F^{I}_{PQ} : F^{2I}_{PQ} \) is:
An electric field is given by \( \vec{E} = (6\hat{i} + 5\hat{j} + 3\hat{k}) \, \text{N/C} \). The electric flux through a surface area \( 30\hat{i} \, \text{m}^2 \) lying in the YZ-plane (in SI units) is:
For a uniform rectangular sheet shown in the figure, the ratio of moments of inertia about the axes perpendicular to the sheet and passing through \( O \) (the center of mass) and \( O' \) (corner point) is:
The logic performed by the circuit shown in the figure is equivalent to: