Step 1: Variation of gravity with height. 
The acceleration due to gravity at a height \( h \) above the Earth's surface is given by: \[ g_h = g \left( \frac{R}{R + h} \right)^2, \] where \( g_h = g/4 \), \( R \) is the radius of Earth, and \( g \) is the acceleration due to gravity on the surface. 
Step 2: Substituting \( g_h = g/4 \). 
\[ \frac{g}{4} = g \left( \frac{R}{R + h} \right)^2. \] Cancel \( g \) from both sides: \[ \frac{1}{4} = \left( \frac{R}{R + h} \right)^2. \] Taking the square root: \[ \frac{1}{2} = \frac{R}{R + h}. \] Rearranging: \[ R + h = 2R \quad \Rightarrow \quad h = R. \] \[ \therefore \text{The height is: } R. \]
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below: